• Chen, S. et al. Structural diversity of bacterial flagellar motors. EMBO J. 30, 2972–2981 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplan, M. et al. The presence and absence of periplasmic rings in bacterial flagellar motors correlates with stator type. eLife https://doi.org/10.7554/eLife.43487 (2019).

  • Zhu, S. et al. In situ structures of polar and lateral flagella revealed by cryo-electron tomography. J. Bacteriol. https://doi.org/10.1128/JB.00117-19 (2019).

  • Rossmann, F. M. & Beeby, M. Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging. Acta Crystallogr. D 74, 585–594 (2018).

    Article 

    Google Scholar
     

  • Armitage, J. P. & Berry, R. M. Assembly and dynamics of the bacterial flagellum. Annu. Rev. Microbiol. 74, 181–200 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, H. et al. Structural basis of torque generation in the bi-directional bacterial flagellar motor. Trends Biochem. Sci. 47, 160–172 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, Y., Xu, H., Motaleb, M. A. & Liu, J. Characterization of the flagellar collar reveals structural plasticity essential for spirochete motility. mBio 12, e0249421 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Qin, Z., Lin, W. T., Zhu, S., Franco, A. T. & Liu, J. Imaging the motility and chemotaxis machineries in Helicobacter pylori by cryo-electron tomography. J. Bacteriol. 199, e00695-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lertsethtakarn, P., Ottemann, K. M. & Hendrixson, D. R. Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, B., Lara-Tejero, M., Lefebre, M., Goodman, A. L. & Galan, J. E. Novel components of the flagellar system in epsilonproteobacteria. mBio 5, e01349-14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrixson, D. R. & DiRita, V. J. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drobnic, T. et al. In situ structure of a bacterial flagellar motor at subnanometre resolution reveals adaptations for increased torque. Nat. Microbiol. 10, 1723–1740 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, E. J. et al. Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination. Dev. Cell 59, 3306–3321.e5 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, B. et al. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol. 15, e2001390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc. Natl Acad. Sci. USA 122, e2412594121 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, R. C., Walsh, M. P., Ely, B. & Shapiro, L. Flagellar hook and basal complex of Caulobacter crescentus. J. Bacteriol. 138, 984–989 (1979).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stallmeyer, M. J., Hahnenberger, K. M., Sosinsky, G. E., Shapiro, L. & DeRosier, D. J. Image reconstruction of the flagellar basal body of Caulobacter crescentus. J. Mol. Biol. 205, 511–518 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Bacterial flagella hijack type IV pili proteins to control motility. Proc. Natl Acad. Sci. USA 121, e2317452121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold3. Nature https://doi.org/10.1038/s41586-024-07487-w (2024).

  • Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R. & Nureki, O. Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072–1075 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Lynch, M. J. et al. Co-folding of a FliF–FliG split domain forms the basis of the MS:C ring interface within the bacterial flagellar motor. Structure 25, 317–328 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, C. et al. Crystal structure of the FliF–FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum. J. Biol. Chem. 293, 2066–2078 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Baker, M. A. et al. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor. Nat. Struct. Mol. Biol. 23, 197–203 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, P. K. et al. CryoEM structures reveal how the bacterial flagellum rotates and switches direction. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01674-1 (2024).

  • Rocaboy, M. et al. The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol. Microbiol. 90, 267–277 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, S. et al. PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa. Nat. Commun. 15, 9382 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chevance, F. F. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, X. et al. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 110, 14390–14395 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jagannathan, A., Constantinidou, C. & Penn, C. W. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183, 2937–2942 (2001).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaplan, M. et al. Novel transient cytoplasmic rings stabilize assembling bacterial flagellar motors. EMBO J. 41, e109523 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, R. et al. The evolutionary path of chemosensory and flagellar macromolecular machines in Campylobacterota. PLoS Genet. 18, e1010316 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeytuni, N. & Zarivach, R. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20, 397–405 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Eggenhofer, E., Haslbeck, M. & Scharf, B. MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti. Mol. Microbiol. 52, 701–712 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Velez-Gonzalez, F. et al. Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2. PLoS ONE 19, e0298028 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, K. H. et al. Spirochetes flagellar collar protein FlbB has astounding effects in orientation of periplasmic flagella, bacterial shape, motility, and assembly of motors in Borrelia burgdorferi. Mol. Microbiol. 102, 336–348 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, K. H., Zhao, X., Xu, H., Liu, J. & Motaleb, M. A. A tetratricopeptide repeat domain protein has profound effects on assembly of periplasmic flagella, morphology and motility of the lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 110, 634–647 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tassinari, M., Rudzite, M., Filloux, A. & Low, H. H. Assembly mechanism of a Tad secretion system secretin–pilotin complex. Nat. Commun. 14, 5643 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roujeinikova, A. Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc. Natl Acad. Sci. USA 105, 10348–10353 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tachiyama, S. et al. FlgY, PflA, and PflB form a spoke-ring network in the high-torque flagellar motor of Helicobacter pylori. Proc. Natl Acad. Sci. USA 122, e2421632122 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botting, J. M. et al. FlbB forms a distinctive ring essential for periplasmic flagellar assembly and motility in Borrelia burgdorferi. PLoS Pathog. 21, e1012812 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallen, M. J. & Matzke, N. J. From The Origin of Species to the origin of bacterial flagella. Nat. Rev. Microbiol. 4, 784–790 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Egelman, E. H. Reducing irreducible complexity: divergence of quaternary structure and function in macromolecular assemblies. Curr. Opin. Cell Biol. 22, 68–74 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jernigan, K. K. & Bordenstein, S. R. Tandem-repeat protein domains across the tree of life. PeerJ 3, e732 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrias, P. N. et al. Diversity and structural–functional insights of alpha-solenoid proteins. Protein Sci. 33, e5189 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira, J. L. et al. The “Jack-of-all-trades” flagellum from Salmonella and E. coli was horizontally acquired from an ancestral beta-proteobacterium. Front. Microbiol. 12, 643180 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Tachiyama, S. et al. The flagellar motor protein FliL forms a scaffold of circumferentially positioned rings required for stator activation. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2118401119 (2022).

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, A. & Xu, C. FastTomo: a SerialEM script for collecting electron tomography data. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435675 (2021).

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168, 378–387 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agulleiro, J. I. & Fernandez, J. J. Tomo3D 2.0—exploitation of advanced vector extensions (AVX) for 3D reconstruction. J. Struct. Biol. 189, 147–152 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Morado, D. R., Hu, B. & Liu, J. Using Tomoauto: a protocol for high-throughput automated cryo-electron tomography. J. Vis. Exp. https://doi.org/10.3791/53608 (2016).

  • Winkler, H. et al. Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J. Struct. Biol. 165, 64–77 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Winkler, H. 3D reconstruction and processing of volumetric data in cryo-electron tomography. J. Struct. Biol. 157, 126–137 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Santiveri, M. et al. Structure and function of stator units of the bacterial flagellar motor. Cell 183, 244–257.e16 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Guo, S., Xu, H., Chang, Y., Motaleb, M. A. & Liu, J. FliL ring enhances the function of periplasmic flagella. Proc. Natl Acad. Sci. USA 119, e2117245119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, J. et al. Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 184, 2665–2679.e19 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, S. et al. Structural basis of directional switching by the bacterial flagellum. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01630-z (2024).

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates. Cell 184, 370–383.e13 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, K., Wang, Z., Shi, J., Li, H. & Zhang, Q. C. A2-Net: Molecular structure estimation from cryo-EM density volumes. In Proc. AAAI Conference on Artificial Intelligence Vol. 33, 1230–1237 (AAAI Press, 2019).

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 

    Google Scholar
     

  • Battesti, A. & Bouveret, E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 58, 325–334 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25, 402–408 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Gabler, F. et al. Protein sequence analysis using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Abby, S. S., Denise, R. & Rocha, E. P. C. Identification of protein secretion systems in bacterial genomes using MacSyFinder version 2. Methods Mol. Biol. 2715, 1–25 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Denise, R., Abby, S. S. & Rocha, E. P. C. Diversification of the type IV filament superfamily into machines for adhesion, protein secretion, DNA uptake, and motility. PLoS Biol. 17, e3000390 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Na, S. I. et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. https://doi.org/10.1007/s12275-018-8014-6 (2018).

  • Galperin, M. Y. et al. COG database update 2024. Nucleic Acids Res. 53, D356–D363 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

    Article 

    Google Scholar
     

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform. 11, 431 (2010).

    Article 

    Google Scholar
     

  • Xu, H., He, J., Liu, J. & Motaleb, M. A. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi. Mol. Microbiol. 113, 418–429 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Karpenahalli, M. R., Lupas, A. N. & Soding, J. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. BMC Bioinform. 8, 2 (2007).

    Article 

    Google Scholar
     

  • D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moller, S., Croning, M. D. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Raddi, G. et al. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J. Bacteriol. 194, 1299–1306 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J. Bacteriol. 191, 5026–5036 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nothaft, H., Liu, X., McNally, D. J. & Szymanski, C. M. N-linked protein glycosylation in a bacterial system. Methods Mol. Biol. 600, 227–243 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J. Mol. Biol. 403, 546–561 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaban, B., Coleman, I. & Beeby, M. Evolution of higher torque in Campylobacter-type bacterial flagellar motors. Sci. Rep. 8, 97 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossmann, F. M., Hug, I., Sangermani, M., Jenal, U. & Beeby, M. In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog. Mol. Microbiol. 114, 443–453 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carroll, B. L. et al. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. eLife https://doi.org/10.7554/eLife.61446 (2020).

  • Ferreira, J. L. et al. γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol. 17, e3000165 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, S. et al. Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proc. Natl Acad. Sci. USA 114, 10966–10971 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar