• Louzada, K. L., Stewart, S. T., Weiss, B. P., Gattacceca, J. & Bezaeva, N. S. Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290, 90–101 (2010).


    Google Scholar
     

  • Louzada, K. L. et al. Impact demagnetization of the Martian crust: current knowledge and future directions. Earth Planet. Sci. Lett. 305, 257–269 (2011).


    Google Scholar
     

  • Lillis, R. J., Stewart, S. T. & Manga, M. Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. Planets 118, 1045–1062 (2013).


    Google Scholar
     

  • Mittelholz, A., Johnson, C. L., Feinberg, J. M., Langlais, B. & Phillips, R. J. Timing of the martian dynamo: new constraints for a core field 4.5 and 3.7 Ga ago. Sci. Adv. 6, 1–7 (2020).


    Google Scholar
     

  • Mittelholz, A. et al. Magnetic field signatures of craters on Mars. Geophys. Res. Lett. 51, 1–10 (2024).


    Google Scholar
     

  • Rochette, P. Crustal magnetization of Mars controlled by lithology or cooling rate in a reversing dynamo? Geophys. Res. Lett. 33, 2006–2009 (2006).


    Google Scholar
     

  • Steele, S. C. et al. Weak magnetism of Martian impact basins may reflect cooling in a reversing dynamo. Nat. Commun. 15, 6831 (2024).


    Google Scholar
     

  • Gattacceca, J. et al. Unraveling the simultaneous shock magnetization and demagnetization of rocks. Phys. Earth Planet. Inter. 182, 42–49 (2010).


    Google Scholar
     

  • Lillis, R. J., Robbins, S., Manga, M., Halekas, J. S. & Frey, H. V. Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1488–1511 (2013).


    Google Scholar
     

  • Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A. & Lillis, R. J. Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets 122, 2294–2311 (2017).


    Google Scholar
     

  • Arkani-Hamed, J. Timing of the Martian core dynamo. J. Geophys. Res. Planets 109, E03006 (2004).


    Google Scholar
     

  • Gilder, S. A., Pohl, J. & Eitel, M. Magnetic signatures of terrestrial meteorite impact craters: a summary. in Magnetic Fields in the Solar System (eds. Lühr, H., Wicht, J., Gilder, S. A. & Holschneider, M.) vol. 448 357–382 (Springer International Publishing, 2018).

  • Mohit, P. S. & Arkani-Hamed, J. Impact demagnetization of the Martian crust. Icarus 168, 305–317 (2004).


    Google Scholar
     

  • Tiwari, S., Joshi, G., Phukon, P., Agarwal, A. & Venkateshwarlu, M. Emplacement of monomict breccia and crater size estimate at the Dhala impact structure, India. Meteorit. Planet. Sci. 60, 663–679 (2025).


    Google Scholar
     

  • Markandeyulu, A. et al. Application of high resolution airborne geophysical data in geological modelling of Mohar Cauldron Complex, Bundelkhand Massif, central India: implications for uranium exploration. Explor. Geophys. 45, 134–146 (2014).


    Google Scholar
     

  • Alva-Valdivia, L. M., Rodríguez-Trejo, A., Morales, J., González-Rangel, J. A. & Agarwal, A. Paleomagnetism and age constraints of historical lava flows from the El Jorullo volcano, Michoacán, Mexico. J. South Am. Earth Sci. 93, 439–448 (2019).


    Google Scholar
     

  • Lattard, D., Engelmann, R., Kontny, A. & Sauerzapf, U. Curie temperatures of synthetic titanomagnetites in the Fe-Ti-O system: effects of composition, crystal chemistry, and thermomagnetic methods. J. Geophys. Res. 111, B12S28 (2006).


    Google Scholar
     

  • Direen, N. G., Pfeiffer, K. M. & Schmidt, P. W. Strong remanent magnetization in pyrrhotite: a structurally controlled example from the Paleoproterozoic Tanami orogenic gold province, northern Australia. Precambrian Res. 165, 96–106 (2008).


    Google Scholar
     

  • Tauxe, L. Paleomagnetic Principles and Practice. vol. 17 (Kluwer Academic Publishers, 2003).

  • Alva-Valdivia, L. M. et al. Nature inspired synthesis of magnetite nanoparticle aggregates from natural berthierine. RSC Adv. 13, 32054–32062 (2023).


    Google Scholar
     

  • Alva-Valdivia, L. M., Guerrero-Díaz, P., Urrutia-Fucugauchi, J., Agarwal, A. & Caballero-Miranda, C. I. Review of magmatic iron-ore mineralization in central-western Mexico: rock-magnetism and magnetic anomaly modelling of Las Truchas, case study. J. South Am. Earth Sci. 97, 102409 (2020).


    Google Scholar
     

  • Alva-Valdivia, L. M. et al. Paleomagnetism and tectonics from the late Pliocene to late Pleistocene in the Xalapa monogenetic volcanic field, Veracruz, Mexico. GSA Bull 131, 1581–1590 (2019).


    Google Scholar
     

  • Fabian, K. Some additional parameters to estimate domain state from isothermal magnetization measurements. Earth Planet. Sci. Lett. 213, 337–345 (2003).


    Google Scholar
     

  • Williams, W. et al. Vortex magnetic domain state behavior in the day plot. Geochem. Geophys. Geosyst. 25, e2024GC011462 (2024).

  • Dearing, J. A. et al. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 124, 228–240 (1996).


    Google Scholar
     

  • Peters, C. & Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth Parts A/B/C 28, 659–667 (2003).


    Google Scholar
     

  • Muxworthy, A. R. Effect of grain interactions on the frequency dependence of magnetic susceptibility. Geophys. J. Int. 144, 441–447 (2001).


    Google Scholar
     

  • Worm, H. & Jackson, M. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res. Solid Earth 104, 25415–25425 (1999).


    Google Scholar
     

  • Clark, D. A. Magnetic petrophysics and magnetic petrology: aids to geological interpretation of magnetic surveys. AGSO J. Aust. Geol. Geophys. 17, 83–103 (1997).


    Google Scholar
     

  • Salminen, J., Pesonen, L. J., Reimold, W. U., Donadini, F. & Gibson, R. L. Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johannesburg Dome, Kaapvaal Craton, South Africa-Implications for the apparent polar wander path of the Kaapvaal Craton during the Mesoproterozoic. Precambrian Res. 168, 167–184 (2009).


    Google Scholar
     

  • Carporzen, L., Weiss, B. P., Gilder, S. A., Pommier, A. & Hart, R. J. Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields. J. Geophys. Res. Planets 117, 1–17 (2012).


    Google Scholar
     

  • Joshi, G., Phukon, P., Agarwal, A. & Ojha, A. K. On the emplacement of the impact melt at the Dhalā impact structure, India. J. Geophys. Res. Planets 128, e2023JE007840 (2023).


    Google Scholar
     

  • Agarwal, A. & Alva-Valdivia, L. M. Curie temperature of weakly shocked target basalts at the Lonar impact crater, India. Earth. Planets Sp 71, 141 (2019).


    Google Scholar
     

  • Agarwal, A., Kontny, A., Kenkmann, T. & Poelchau, M. H. Variation in magnetic fabrics at low shock pressure due to experimental impact cratering. J. Geophys. Res. Solid Earth 124, 9095–9108 (2019).


    Google Scholar
     

  • Reznik, B., Kontny, A., Fritz, J. & Gerhards, U. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst. 17, 2374–2393 (2016).


    Google Scholar
     

  • Reznik, B., Kontny, A. & Fritz, J. Effect of moderate shock waves on magnetic susceptibility and microstructure of a magnetite-bearing ore. Meteorit. Planet. Sci. 52, 1495–1504 (2017).


    Google Scholar
     

  • Pati et al. Pseudotachylitic breccia from the Dhala impact structure, north-central India: Texture, mineralogy and geochemical characterization. Tectonophysics 649, 18–32 (2015).


    Google Scholar
     

  • Onorato, P. I. K., Uhlmann, D. R. & Simonds, C. H. The thermal history of the Manicouagan Impact Melt Sheet, Quebec. J. Geophys. Res. Solid Earth 83, 2789–2798 (1978).


    Google Scholar
     

  • Nagy, L. et al. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales. Proc. Natl. Acad. Sci. USA. 114, 10356–10360 (2017).


    Google Scholar
     

  • Gattacceca, J. et al. Paleomagnetism and rock magnetism of east and west Clearwater Lake impact structures. Can. J. Earth Sci. 56, 983–993 (2019).


    Google Scholar
     

  • Behera, S. S., Tiwari, S., Pandey, A. K., Agarwal, A. & Ojha, A. K. The probable direction of impact at Dhala impact structure, India deciphered from microfracture intensity and X-ray diffractometry: a new potential impact direction indicator. Earth Planets 1–11 https://doi.org/10.1186/s40623-024-02028-1 (2024).

  • Gattacceca, J., Lamali, A., Rochette, P., Boustie, M. & Berthe, L. The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Inter. 162, 85–98 (2007).


    Google Scholar
     

  • Gattacceca, J. et al. Investigating impact demagnetization through laser impacts and SQUID microscopy. Geology 34, 333–336 (2006).


    Google Scholar
     

  • Roberts, A. P. et al. Resolving the origin of pseudo-single domain magnetic behavior. J. Geophys. Res. Solid Earth 122, 9534–9558 (2017).


    Google Scholar
     

  • Bezaeva, N. S., Rochette, P., Gattacceca, J., Sadykov, R. A. & Trukhin, V. I. Pressure demagnetization of the Martian crust: ground truth from SNC meteorites. Geophys. Res. Lett. 34, 2–5 (2007).


    Google Scholar
     

  • Bezaeva, N. S., Gattacceca, J., Rochette, P., Sadykov, R. A. & Trukhin, V. I. Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2 GPa. Phys. Earth Planet. Inter. 179, 7–20 (2010).


    Google Scholar
     

  • Gilder, Goff, S. A., Le, M. & Chervin, J.-C. Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts. High Press. Res. 26, 539–547 (2006).


    Google Scholar
     

  • Jackson, M., Borradaile, G., Hudleston, P. & Banerjee, S. Experimental deformation of synthetic magnetite-bearing calcite sandstones: effects on remanence, bulk magnetic properties, and magnetic anisotropy. J. Geophys. Res. 98, 383–401 (1993).


    Google Scholar
     

  • Louzada, K. L., Stewart, S. T. & Weiss, B. P. Effect of shock on the magnetic properties of pyrrhotite, the Martian crust, and meteorites. Geophys. Res. Lett. 34, 1–5 (2007).


    Google Scholar
     

  • Tikoo, S. M. et al. Preservation and detectability of shock-induced magnetization. J. Geophys. Res. Planets 120, 1461–1475 (2015).


    Google Scholar
     

  • Nagata, T. & Carleton, B. J. Notes on piezo-remanent magnetization of igneous rocks. J. Geomagn. Geoelectr. 20, 115–127 (1968).


    Google Scholar
     

  • Nagata, T. Basic magnetic properties of rocks under the effects of mechanical stresses. Tectonophysics 9, 167–195 (1970).


    Google Scholar
     

  • Gilder, S. A., LeGoff, M., Chervin, J. C. & Peyronneau, J. Magnetic properties of single and multi-domain magnetite under pressures from 0 to 6 GPa. Geophys. Res. Lett. 31, 1–5 (2004).


    Google Scholar
     

  • Nagata, T. Main characteristics of piezo-magnetization and their qualitative interpretation. J. Geomagn. Geoelectr. 18, 81–97 (1966).


    Google Scholar
     

  • Pati, J. K. et al. Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteorit. Planet. Sci. 52, 722–736 (2017).


    Google Scholar
     

  • Dunlop, D. J. & Özdemir, Ö. Rock Magnetism: Fundamentals and Frontiers. (Cambridge University Press, 1997).

  • Kuzina, D. M. et al. Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteorit. Planet. Sci. 57, 1846–1860 (2022).


    Google Scholar
     

  • Mendes, B., Kontny, A., Dudzisz, K. & Wilke, F. Ries magnetic mineralogy: exploring impact and post-impact evolution of crater magnetism. Meteorit. Planet. Sci. 59, 1577–1609 (2024).


    Google Scholar
     

  • O’Keefe, J. D. & Ahrens, T. J. Impact-induced melting of planetary surfaces. in Large Meteorite Impacts and Planetary Evolution (eds. Dressier, B. O., Grieve, R. A. F. & Sharpton, V. L.) 0 (Geological Society of America, https://doi.org/10.1130/SPE293-p103.1992).

  • Plescia, J. B. & Cintala, M. J. Impact melt in small lunar highland craters. J. Geophys. Res. Planets 117, 1–12 (2012).


    Google Scholar
     

  • Kletetschka, G., Kavkova, R. & Ucar, H. Plasma shielding removes prior magnetization record from impacted rocks near Santa Fe. New Mexico. Sci. Rep. 11, 1–13 (2021).


    Google Scholar
     

  • Narrett, I. S. et al. Impact plasma amplification of the ancient lunar dynamo. Sci. Adv. 11, 1–11 (2025).


    Google Scholar
     

  • Carporzen, L., Gilder, S. A. & Hart, R. J. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005).


    Google Scholar
     

  • Dunlop, D. J. & Arkani-Hamed, J. Magnetic minerals in the Martian crust. J. Geophys. Res. Planets 110, 1–11 (2005).


    Google Scholar
     

  • Rochette, P. et al. Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteorit. Planet. Sci. 40, 529–540 (2005).


    Google Scholar
     

  • Pati, Reimold, W. U., Koeberl, C. & Pati, P. The Dhala structure, Bundelkhand craton, central india-eroded remnant of a large paleoproterozoic impact structure. Meteorit. Planet. Sci. 43, 1383–1398 (2008).

  • Saha, L. et al. Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U–Pb–Hf isotope studies. Geol. Mag. 153, 179–192 (2016).


    Google Scholar
     

  • Pradhan, V. R., Meert, J. G., Pandit, M. K., Kamenov, G. & Mondal, M. E. A. Paleomagnetic and geochronological studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and paleogeographic reconstructions. Precambrian Res. 198–199, 51–76 (2012).


    Google Scholar
     

  • Deb, T. & Bhattacharyya, T. Earth-Science Reviews The evolution of the fracture systems under progressive sinistral shear in the Bundelkhand Craton, Central India: a review and new insights. Earth Sci. Rev 235, 104238 (2022).


    Google Scholar
     

  • Singh, A. K. et al. Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India. Earth Surf. Process. Landforms 46, 1482–1503 (2021).


    Google Scholar
     

  • Agarwal, A., Kumar, S., Joshi, G. & Agarwal, K. K. Evidence for shock provides insight into the formation of the central elevated area in the Dhala impact structure, India. Meteorit. Planet. Sci. 55, 2772–2779 (2020).


    Google Scholar
     

  • Petrovský, E. & Kapička, A. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res. Solid Earth 111, B12S27 (2006).


    Google Scholar
     

  • Paterson, G. A., Zhao, X., Jackson, M. & Heslop, D. Measuring, processing, and analyzing hysteresis data. Geochem. Geophys. Geosyst. 19, 1925–1945 (2018).


    Google Scholar
     

  • Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 107, EPM 4-1–EPM 4-22 (2002).


    Google Scholar
     

  • Dunlop, D. J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. Solid Earth 107, EPM 5-1–EPM 5-15 (2002).


    Google Scholar
     

  • Lurcock, P. C. & Wilson, G. S. PuffinPlot: a versatile, user-friendly program for paleomagnetic analysis. Geochem. Geophys. Geosyst. 13, 1–6 (2012).


    Google Scholar
     

  • Fisher, R. A. Dispersion on a sphere. Proc. R. Soc. London. A. Math. Phys. Sci. 217, 295–305 (1953).


    Google Scholar
     

  • Clark, D. A. & Emerson, J. B. Notes on rock magnetization characteristics in applied geophysical studies. Explor. Geophys. 22, 547–555 (1991).


    Google Scholar
     

  • Pandey, A. K., Agarwal, A., Joshi, G., Sangode, S. J. & Venkateshwarlu, M. Data set of Shock demagnetization in an ambient magnetic field at the Dhala impact structure, India. https://doi.org/10.6084/m9.figshare.30851126 (2025).

  • Jain, S. C., Gaur, V. P., Srivastava, S. K., Nambiar, K. V. & Saxena, H. P. Recent find of a cauldron structure in Bundelkhand Craton. Geol. Surv. India Spec. Publ. 289, 297 (2001).


    Google Scholar
     

  • Day, R., Fuller, M. & Schmidt, V. A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13, 260–267 (1977).


    Google Scholar