• Protected Planet Report 2020 (UNEP-WCMC and IUCN, 2021).

  • Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Allan, J. R. et al. The minimum land area requiring conservation attention to safeguard biodiversity. Science 376, 1094–1101 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 13, 1628 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vijay, V. & Armsworth, P. R. Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Proc. Natl Acad. Sci. USA 118, e2010121118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, C., Levi, T., Ripple, W. J., Zárrate-Charry, D. A. & Betts, M. G. A forest loss report card for the world’s protected areas. Nat. Ecol. Evol. 5, 520–529 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • IPBES Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.6417333 (2019).

  • Montesino Pouzols, F. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 

    Google Scholar
     

  • Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Brodie, J. F. & Watson, J. E. M. Human responses to climate change will likely determine the fate of biodiversity. Proc. Natl Acad. Sci. USA 120, e2205512120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar
     

  • Adams, V. M. et al. Multiple-use protected areas are critical to equitable and effective conservation. One Earth 6, 1173–1189 (2023).

    Article 

    Google Scholar
     

  • Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • CBD Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity 15/4. Kunming–Montreal Global Biodiversity Framework (Secretariat of the Convention on Biological Diversity, 2022); https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf

  • Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125–128 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Watson, J. E., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).

    Article 

    Google Scholar
     

  • Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, V. M., Pressey, R. L. & Álvarez-Romero, J. G. Using optimal land-use scenarios to assess trade-offs between conservation, development, and social values. PLoS ONE 11, e0158350 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, B. A. et al. Minimising the loss of biodiversity and ecosystem services in an intact landscape under risk of rapid agricultural development. Environ. Res. Lett. 15, 014001 (2020).

    Article 

    Google Scholar
     

  • Williams, B. A. et al. Bringing the forest back: restoration priorities in Colombia. Divers. Distrib. 30, e13821 (2024).

    Article 

    Google Scholar
     

  • UN United Nations Decade on Ecosystem Restoration (2021–2030) (United Nations General Assembly, 2019).

  • Chan, S. et al. The global biodiversity framework needs a robust action agenda. Nat. Ecol. Evol. 7, 172–173 (2022).

    Article 

    Google Scholar
     

  • Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, Z. & Chen, Y. STUrban: a novel spatial–temporal deep learning model to simulate long-term urban growth. Inf. Geogr. 1, 100004 (2025).


    Google Scholar
     

  • Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Evans, M. C. Deforestation in Australia: drivers, trends and policy responses. Pac. Conserv. Biol. 22, 130–150 (2016).

    Article 

    Google Scholar
     

  • Angelsen, A. Policies for reduced deforestation and their impact on agricultural production. Proc. Natl Acad. Sci. USA 107, 19639–19644 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, J. E. M., Ellis, E. C., Pillay, R., Williams, B. A. & Venter, O. Mapping industrial influences on Earth’s ecology. Annu. Rev. Environ. Resour. 48, 289–317 (2023).

    Article 

    Google Scholar
     

  • Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segan, D. B., Murray, K. A. & Watson, J. E. M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Glob. Ecol. Conserv. 5, 12–21 (2016).


    Google Scholar
     

  • UNEP-WCMC and IUCN Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2024); https://www.protectedplanet.net/en

  • Xu, W. et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114, 1601–1606 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tseng, T.-H. et al. Protected areas unevenly contribute to terrestrial vertebrate habitat conservation in China. Commun. Earth Environ. 6, 313 (2025).

    Article 

    Google Scholar
     

  • Yang, H. et al. Effectiveness of China’s protected areas in reducing deforestation. Environ. Sci. Pollut. Res. Int. 26, 18651–18661 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ghosh-Harihar, M. et al. Protected areas and biodiversity conservation in India. Biol. Conserv. 237, 114–124 (2019).

    Article 

    Google Scholar
     

  • Reddy, C. S., Saranya, K. R. L., Jha, C. S., Dadhwal, V. K. & Murthy, Y. V. N. K. Earth observation data for habitat monitoring in protected areas of India. Remote Sens. Appl. Soc. Environ. 8, 114–125 (2017).


    Google Scholar
     

  • Potapov, P. et al. The Global 2000–2020 Land Cover and Land Use Change Dataset derived from the Landsat Archive: first results. Front. Remote Sens. 3, 856903 (2022).

    Article 

    Google Scholar
     

  • Parente, L. et al. Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal machine Learning. Sci. Data 11, 1303 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method. Earth Syst. Sci. Data 16, 1353–1381 (2024).

    Article 

    Google Scholar
     

  • Wang, T. & Sun, F. Global gridded GDP data set consistent with the shared socioeconomic pathways. Sci. Data 9, 221 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J. & Pesaresi, M. Downscaling SSP-consistent global spatial urban land projections from 1/8-degree to 1-km resolution 2000–2100. Sci. Data 8, 281 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swift, T. L. & Hannon, S. J. Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol. Rev. Camb. Philos. Soc. 85, 35–53 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, D., Leroux, S. J. & He, F. Methods and models for identifying thresholds of habitat loss. Ecography 40, 131–143 (2017).

    Article 

    Google Scholar
     

  • Johnson, C. J. Identifying ecological thresholds for regulating human activity: effective conservation or wishful thinking? Biol. Conserv. 168, 57–65 (2013).

    Article 

    Google Scholar
     

  • Wies, G., Nicasio Arzeta, S. & Martinez Ramos, M. Critical ecological thresholds for conservation of tropical rainforest in human modified landscapes. Biol. Conserv. 255, 109023 (2021).

    Article 

    Google Scholar
     

  • Liu, L., Zhang, X. & Zhao, T. GLC_FCS30D: the first global 30-m land-cover dynamic monitoring product with fine classification system from 1985 to 2022. Zenodo https://doi.org/10.5281/zenodo.8239305 (2023).

  • Wang, T. & Sun, F. Gross domestic product (GDP) downscaling: a global gridded dataset consistent with the Shared Socioeconomic Pathways. Zenodo https://doi.org/10.5281/zenodo.5880037 (2022).