• Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

    ADS 

    Google Scholar
     

  • Brunner, D. & Psaltis, D. Competitive photonic neural networks. Nat. Photonics 15, 323–324 (2021).

    ADS 

    Google Scholar
     

  • Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys. X 7, 1981155 (2022).


    Google Scholar
     

  • Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).


    Google Scholar
     

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).


    Google Scholar
     

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    ADS 

    Google Scholar
     

  • Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).


    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS 

    Google Scholar
     

  • Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

    ADS 

    Google Scholar
     

  • Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS 

    Google Scholar
     

  • Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    ADS 

    Google Scholar
     

  • Fyrillas, A., Faure, O., Maring, N., Senellart, J. & Belabas, N. Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits. Optica 11, 427 (2024).

    ADS 

    Google Scholar
     

  • Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

    ADS 

    Google Scholar
     

  • Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

    ADS 

    Google Scholar
     

  • Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

    ADS 

    Google Scholar
     

  • Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

    ADS 

    Google Scholar
     

  • Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).


    Google Scholar
     

  • Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).

    ADS 

    Google Scholar
     

  • Zuo, C. & Chen, Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks. Light Sci. Appl. 11, 208 (2022).

    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Space–time projection enabled ultrafast all‐optical diffractive neural network. Laser Photon. Rev. 18, 2301367 (2024).

    ADS 

    Google Scholar
     

  • Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 8, 112 (2019).

    ADS 

    Google Scholar
     

  • Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 11, 158 (2022).

    ADS 

    Google Scholar
     

  • Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10, 25 (2021).


    Google Scholar
     

  • Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).

    ADS 

    Google Scholar
     

  • Rahman, M. S. S., Yang, X., Li, J., Bai, B. & Ozcan, A. Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl. 12, 195 (2023).

    ADS 

    Google Scholar
     

  • Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl. 10, 196 (2021).

    ADS 

    Google Scholar
     

  • Cheng, Y. et al. Photonic neuromorphic architecture for tens-of-task lifelong learning. Light Sci. Appl. 13, 56 (2024).

    ADS 

    Google Scholar
     

  • Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

    ADS 

    Google Scholar
     

  • Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).

    ADS 

    Google Scholar
     

  • Yao, Y., Wei, Y., Dong, J., Li, M. & Zhang, X. Large-scale reconfigurable integrated circuits for wideband analog photonic computing. Photonics 10, 300 (2023).


    Google Scholar
     

  • Nemati, A., Wang, Q., Hong, M. H. & Teng, J. H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 1–25 (2018).


    Google Scholar
     

  • Qu, Y., Lian, H., Ding, C., Liu, H. & Liu, L. High-frame-rate reconfigurable diffractive neural network based on superpixels. Opt. Lett 48, 1–4 (2023).

    ADS 

    Google Scholar
     

  • Yang, G. et al. Nonlocal phase-change metaoptics for reconfigurable nonvolatile image processing. Light Sci. Appl. 14, 182 (2025).


    Google Scholar
     

  • Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components. ACS Photonics 8, 283–295 (2021).


    Google Scholar
     

  • Li, Q., Sun, Y. & Zhang, X. Single-layer universal optical computing. Phys. Rev. A 109, 053527 (2024).

    ADS 

    Google Scholar
     

  • Giamougiannis, G. et al. A coherent photonic crossbar for scalable universal linear optics. J. Light. Technol. 41, 2425–2442 (2023).

    ADS 

    Google Scholar
     

  • Yang, Y., Krompass, D. & Tresp, V. Tensor-train recurrent neural networks for video classification. In Proc. 34th International Conference on Machine Learning https://proceedings.mlr.press/v70/yang17e/yang17e.pdf (PMLR, 2017).

  • Cheng, Y., Li, G., Wong, N., Chen, H. & Yu, H. DEEPEYE: a deeply tensor-compressed neural network for video comprehension on terminal devices. ACM Trans. Embed. Comput. Syst. 19, 1–25 (2020).


    Google Scholar
     

  • Miscuglio, M. & Sorger, V. J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 7, 031404 (2020).

    ADS 

    Google Scholar
     

  • Wang, Y. et al. An energy-efficient nonvolatile in-memory computing architecture for extreme learning machine by domain-wall nanowire devices. IEEE Trans. Nanotechnol. 14, 998–1012 (2015).

    ADS 

    Google Scholar
     

  • Cheng, Y., Wang, C., Chen, H.-B. & Yu, H. A large-scale in-memory computing for deep neural network with trained quantization. Integration 69, 345–355 (2019).


    Google Scholar
     

  • Krizhevsky, A. et al. Learning multiple layers of features from tiny images. University of Toronto https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (2009).

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248-255 (IEEE, 2009); https://doi.org/10.1109/CVPR.2009.5206848

  • Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011).

    MathSciNet 

    Google Scholar
     

  • Cheng, Y., Yang, Y., Chen, H.-B., Wong, N. & Yu, H. S3-Net: a fast scene understanding network by single-shot segmentation for autonomous driving. ACM Trans. Intell. Syst. Technol. 12, 1–19 (2021).


    Google Scholar
     

  • A, de S.-E. The Little Prince and Letter to a Hostage (Penguin UK, 2021).

  • Rong, X. word2vec parameter learning explained. Nature 606, 501–506 (2014).


    Google Scholar
     

  • Graves, A., Jaitly, N. & Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding 273–278 (IEEE, 2013); https://doi.org/10.1109/ASRU.2013.6707742

  • Gesmundo, A. & Dean, J. An evolutionary approach to dynamic introduction of tasks in large-scale multitask learning systems. Preprint at https://arxiv.org/abs/2205.12755 (2022).

  • Plath, J., Sinclair, G. & Curnutt, K. The 100 Greatest Literary Characters (Bloomsbury, 2019).

  • Carroll L. Alice’s Adventures in Wonderland (Broadview Press, 2011).

  • Baum, L. F. The Wonderful Wizard of Oz (Broadview Press, 2024).

  • Abdi, H. & Williams, L. J. Principal component analysis. WIREs Comput. Stat. 2, 433–459 (2010).


    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  • Wang, B. Dataset for couplets. GitHub https://github.com/wb14123/couplet-dataset (2018).

  • michaelarman. Poems Dataset (NLP). Kaggle https://www.kaggle.com/datasets/michaelarman/poemsdataset (2020).

  • Karvelis, P., Gavrilis, D., Georgoulas, G. & Stylios, C. Topic recommendation using Doc2Vec. In 2018 International Joint Conference on Neural Networks (IJCNN) 1–6 (IEEE, 2018); https://doi.org/10.1109/IJCNN.2018.8489513

  • Chen, D. & Dollan, W. Collecting highly parallel data for paraphrase evaluation. In Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (eds Lin, D. et al.) 190–200 (Association for Computational Linguistics, 2011).

  • Abu-El-Haija, S. et al. YouTube-8M: a large-scale video classification benchmark. Preprint at https://arxiv.org/abs/1609.08675 (2016).

  • Yang, A. et al. Vid2Seq: large-scale pretraining of a visual language model for dense video captioning. Preprint at https://arxiv.org/abs/2302.14115 (2023).

  • Liang, Y., Zhu, L., Wang, X. & Yang, Y. IcoCap: improving video captioning by compounding images. IEEE Trans. Multimed. 26, 4389–4400 (2024).


    Google Scholar
     

  • Xu, J., Mei, T., Yao, T. & Rui, Y. MSR-VTT: a large video description dataset for bridging video and language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5288–5296 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.571

  • Schuldt, C., Laptev, I. & Caputo, B. Recognizing human actions: a local SVM approach. In Proc. 17th International Conference on Pattern Recognition, ICPR 2004 https://doi.org/10.1109/ICPR.2004.1334462 (IEEE, 2004).

  • Srivastava, N., Mansimov, E. & Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. Preprint at https://arxiv.org/abs/1502.04681 (2015).

  • Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


    Google Scholar
     

  • Wang, C. et al. Diffractive tensorized unit for million-TOPS general-purpose computing. Dryad https://doi.org/10.5061/dryad.7d7wm387c (2025).