Ashcroft, N. W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).
Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
Ashcroft, N. W. Bridgman’s high-pressure atomic destructibility and its growing legacy of ordered states. J. Phys. Condens. Matter 16, S945 (2004).
Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Cond. Matter 34, 183002 (2022).
Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
Somayazulu, M. et al. Evidence for Superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett. 37, 107401 (2020).
Sun, D. et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun. 12, 6863 (2021).
Chen, W. et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 127, 117001 (2021).
Cao, Z.-Y. et al. Probing superconducting gap in CeH9 under pressure. arXiv preprint arXiv: https://doi.org/10.48550/arXiv.2401.12682 (2024).
Semenok, D. et al. Evidence for pseudogap phase in cerium superhydrides: CeH10 and CeH9. arXiv preprint arXiv: https://arxiv.org/abs/2307.11742 (2023).
Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
Sun, W., Kuang, X., Keen, H. D. J., Lu, C. & Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524 (2020).
Guo, J., Chen, S., Chen, W., Huang, X. & Cui, T. Advances in the synthesis and superconductivity of lanthanide polyhydrides under high pressure. Front. Electron. Mater. 2, 906213 (2022).
Zhong, X. et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides. J. Am. Chem. Soc. 144, 13394–13400 (2022).
Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, eaax6849 (2020).
Zhou, D. et al. High-pressure synthesis of magnetic neodymium polyhydrides. J. Am. Chem. Soc. 142, 2803–2811 (2020).
Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).
Shao, M. et al. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem. 60, 15330–15335 (2021).
Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).
Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. 114, 6990–6995 (2017).
Liu, L. et al. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B 99, 140501 (2019).
Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Anisimov, V. I. et al. Full orbital calculation scheme for materials with strongly correlated electrons. Phys. Rev. B 71, 125119 (2005).
Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).
Lechermann, F. et al. Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125120 (2006).
Pourovskii, L. V., Amadon, B., Biermann, S. & Georges, A. Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications. Phys. Rev. B 76, 235101 (2007).
Amadon, B. et al. Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B 77, 205112 (2008).
Korotin, D. et al. Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials. Eur. Phys. J. B 65, 91–98 (2008).
Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).
Haule, K. & Birol, T. Free energy from stationary implementation of the DFT + DMFT functional. Phys. Rev. Lett. 115, 256402 (2015).
Plekhanov, E. et al. Many-body renormalization of forces in f-electron materials. Phys. Rev. B 98, 075129 (2018).
Koskenmaki, D. C. & Gschneidner Jr, K. A. Cerium. Handb. Phys. Chem. Rare Earths 1, 337–377 (1978).
Held, K., McMahan, A. K. & Scalettar, R. T. Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. Phys. Rev. Lett. 87, 276404 (2001).
Amadon, B., Biermann, S., Georges, A. & Aryasetiawan, F. The α − γ transition of cerium is entropy driven. Phys. Rev. Lett. 96, 066402 (2006).
Haule, K. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007).
Huang, L. & Lu, H. Electronic structure of cerium: a comprehensive first-principles study. Phys. Rev. B 99, 045122 (2019).
Allen, J. et al. Electronic structure of cerium and light rare-earth intermetallics. Adv. Phys. 35, 275–316 (1986).
Matar, S. F. Review on cerium intermetallic compounds: a bird’s eye outlook through DFT. Prog. Solid State Chem. 41, 55–85 (2013).
McMahan, A. K., Huscroft, C., Scalettar, R. T. & Pollock, E. L. Volume-collapse transitions in the rare earth metals. J. Comput.-Aided Mater. Des. 5, 131–162 (1998).
Söderlind, P., Turchi, P. E. A., Landa, A. & Lordi, V. Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J. Phys.: Cond. Matter 26, 416001 (2014).
Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).
Tomczak, J. M. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.:Condens. Matter 30, 183001 (2018).
Brüning, E. M. et al. Cefepo: A heavy fermion metal with ferromagnetic correlations. Phys. Rev. Lett. 101, 117206 (2008).
Ohishi, K. et al. Development of the heavy-fermion state in Ce2IrIn8 and the effects of ce dilution in (Ce1−xLax)2IrIn8. Phys. Rev. B 80, 125104 (2009).
Wang, C. et al. Effect of hole doping on superconductivity in compressed CeH9 at high pressures. Phys. Rev. B 104, L020504 (2021).
Jeon, H., Wang, C., Yi, S. & Cho, J.-H. Origin of enhanced chemical precompression in cerium hydride CeH9. Sci. Rep. 10, 16878 (2020).
Parlinski, K., Li, Z. Q. & Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997).
Monserrat, B. Electron–phonon coupling from finite differences. J. Condens. Matter Phys. 30, 083001 (2018).
Koçer, C. P., Haule, K., Pascut, G. L. & Monserrat, B. Efficient lattice dynamics calculations for correlated materials with DFT + DMFT. Phys. Rev. B 102, 245104 (2020).
Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).
Khanal, G. & Haule, K. Correlation driven phonon anomalies in bulk FeSe. Phys. Rev. B 102, 241108 (2020).
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).
Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).
Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263–1271 (1962).
Allen, P. B. & Mitrović, B. Theory of superconducting Tc. Solid State Phys. 37, 1–92 (1983).
Margine, E. R. & Giustino, F. Anisotropic Migdal-Eliashberg theory using Wannier functions. Phys. Rev. B 87, 024505 (2013).
Plekhanov, E. et al. Computational materials discovery for lanthanide hydrides at high pressure for high temperature superconductivity. Phys. Rev. Res. 4, 013248 (2022).
Hubbard, J. & Flowers, B. H. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238–257 (1963).
Gull, E. et al. Continuous-time monte carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).
Tomczak, J. M. & Biermann, S. Effective band structure of correlated materials: the case of VO2. J. Phys. Condens. Matter 19, 365206 (2007).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Yuan, Z. et al. Correlation-enhanced electron-phonon coupling and superconductivity in (Ba, K)SbO3 superconductors. Phys. Rev. B 105, 014517 (2022).
Yin, Z. P., Kutepov, A. & Kotliar, G. Correlation-enhanced electron-phonon coupling: applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-Tc superconductors. Phys. Rev. X 3, 021011 (2013).
Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).
Zou, Q. et al. Correlation enhanced electron-phonon coupling in FeSe/SrTiO3 at a magic angle. arXiv preprint arXiv:https://arxiv.org/abs/2506.22435 (2025).
Poliukhin, A., Colonna, N., Libbi, F., Poncé, S. & Marzari, N. Carrier mobilities and electron-phonon interactions beyond DFT. arXiv preprint arXiv:https://arxiv.org/abs/2508.14852 (2025).
Yam, Y.-C., Sawatzky, G. A. & Berciu, M. Dressing due to correlations strongly reduces the effect of electron-phonon coupling. Phys. Rev. B 106, 075152 (2022).
Coulter, J. & Millis, A. J. Electron-phonon coupling in correlated materials: insights from the hubbard-holstein model. arXiv preprint arXiv:https://arxiv.org/abs/2505.08081 (2025).
Zheng, F. et al. Prediction of ambient pressure superconductivity in cubic ternary hydrides with MH6 octahedra. Mater. Today Phys. 42, 101374 (2024).
Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).
Worm, P. et al. Spin fluctuations sufficient to mediate superconductivity in nickelates. Phys. Rev. B 109, 235126 (2024).
Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).
Kaufmann, J. & Held, K. Ana_cont: Python package for analytic continuation. Comput. Phys. Commun. 282, 108519 (2023).
Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. 14, 2717–2744 (2002).
Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).
Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.:Condens. Matter 29, 465901 (2017).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Tomczak, J. M., Miyake, T., Sakuma, R. & Aryasetiawan, F. Effective Coulomb interactions in solids under pressure. Phys. Rev. B 79, 235133 (2009).
Abramovitch, D. J., Zhou, J.-J., Mravlje, J., Georges, A. & Bernardi, M. Combining electron-phonon and dynamical mean-field theory calculations of correlated materials: Transport in the correlated metal Sr2RuO4. Phys. Rev. Mater. 7, 093801 (2023).
Abramovitch, D. J., Coulter, J., Beck, S. & Millis, A. Electron-phonon coupling in correlated metals: a dynamical mean-field theory study. Phys. Rev. B 112, 075113 (2025).
Lloyd-Williams, J. H. & Monserrat, B. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells. Phys. Rev. B 92, 184301 (2015).
Poncé, S., Margine, E., Verdi, C. & Giustino, F. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).
Lee, H. et al. Electron–phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).