• Ashcroft, N. W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashcroft, N. W. Bridgman’s high-pressure atomic destructibility and its growing legacy of ordered states. J. Phys. Condens. Matter 16, S945 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Boeri, L. et al. The 2021 room-temperature superconductivity roadmap. J. Phys. Cond. Matter 34, 183002 (2022).

    Article 

    Google Scholar
     

  • Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somayazulu, M. et al. Evidence for Superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett. 37, 107401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sun, D. et al. High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride. Nat. Commun. 12, 6863 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar. Phys. Rev. Lett. 127, 117001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Z.-Y. et al. Probing superconducting gap in CeH9 under pressure. arXiv preprint arXiv: https://doi.org/10.48550/arXiv.2401.12682 (2024).

  • Semenok, D. et al. Evidence for pseudogap phase in cerium superhydrides: CeH10 and CeH9. arXiv preprint arXiv: https://arxiv.org/abs/2307.11742 (2023).

  • Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, W., Kuang, X., Keen, H. D. J., Lu, C. & Hermann, A. Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J., Chen, S., Chen, W., Huang, X. & Cui, T. Advances in the synthesis and superconductivity of lanthanide polyhydrides under high pressure. Front. Electron. Mater. 2, 906213 (2022).

    Article 

    Google Scholar
     

  • Zhong, X. et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides. J. Am. Chem. Soc. 144, 13394–13400 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, D. et al. Superconducting praseodymium superhydrides. Sci. Adv. 6, eaax6849 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, D. et al. High-pressure synthesis of magnetic neodymium polyhydrides. J. Am. Chem. Soc. 142, 2803–2811 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5075 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, M. et al. Superconducting ScH3 and LuH3 at megabar pressures. Inorg. Chem. 60, 15330–15335 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troyan, I. A. et al. Anomalous high-temperature superconductivity in YH6. Adv. Mater. 33, 2006832 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. 114, 6990–6995 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Microscopic mechanism of room-temperature superconductivity in compressed LaH10. Phys. Rev. B 99, 140501 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 136, B864–B871 (1964).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • Anisimov, V. I. et al. Full orbital calculation scheme for materials with strongly correlated electrons. Phys. Rev. B 71, 125119 (2005).

    Article 

    Google Scholar
     

  • Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lechermann, F. et al. Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials. Phys. Rev. B 74, 125120 (2006).

    Article 

    Google Scholar
     

  • Pourovskii, L. V., Amadon, B., Biermann, S. & Georges, A. Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications. Phys. Rev. B 76, 235101 (2007).

    Article 

    Google Scholar
     

  • Amadon, B. et al. Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals. Phys. Rev. B 77, 205112 (2008).

    Article 

    Google Scholar
     

  • Korotin, D. et al. Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials. Eur. Phys. J. B 65, 91–98 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Haule, K., Yee, C.-H. & Kim, K. Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys. Rev. B 81, 195107 (2010).

    Article 

    Google Scholar
     

  • Haule, K. & Birol, T. Free energy from stationary implementation of the DFT + DMFT functional. Phys. Rev. Lett. 115, 256402 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Plekhanov, E. et al. Many-body renormalization of forces in f-electron materials. Phys. Rev. B 98, 075129 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Koskenmaki, D. C. & Gschneidner Jr, K. A. Cerium. Handb. Phys. Chem. Rare Earths 1, 337–377 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Held, K., McMahan, A. K. & Scalettar, R. T. Cerium volume collapse: results from the merger of dynamical mean-field theory and local density approximation. Phys. Rev. Lett. 87, 276404 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amadon, B., Biermann, S., Georges, A. & Aryasetiawan, F. The α − γ transition of cerium is entropy driven. Phys. Rev. Lett. 96, 066402 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haule, K. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B 75, 155113 (2007).

    Article 

    Google Scholar
     

  • Huang, L. & Lu, H. Electronic structure of cerium: a comprehensive first-principles study. Phys. Rev. B 99, 045122 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Allen, J. et al. Electronic structure of cerium and light rare-earth intermetallics. Adv. Phys. 35, 275–316 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Matar, S. F. Review on cerium intermetallic compounds: a bird’s eye outlook through DFT. Prog. Solid State Chem. 41, 55–85 (2013).

    Article 
    CAS 

    Google Scholar
     

  • McMahan, A. K., Huscroft, C., Scalettar, R. T. & Pollock, E. L. Volume-collapse transitions in the rare earth metals. J. Comput.-Aided Mater. Des. 5, 131–162 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Söderlind, P., Turchi, P. E. A., Landa, A. & Lordi, V. Ground-state properties of rare-earth metals: an evaluation of density-functional theory. J. Phys.: Cond. Matter 26, 416001 (2014).


    Google Scholar
     

  • Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Tomczak, J. M. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.:Condens. Matter 30, 183001 (2018).

    PubMed 

    Google Scholar
     

  • Brüning, E. M. et al. Cefepo: A heavy fermion metal with ferromagnetic correlations. Phys. Rev. Lett. 101, 117206 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Ohishi, K. et al. Development of the heavy-fermion state in Ce2IrIn8 and the effects of ce dilution in (Ce1−xLax)2IrIn8. Phys. Rev. B 80, 125104 (2009).

    Article 

    Google Scholar
     

  • Wang, C. et al. Effect of hole doping on superconductivity in compressed CeH9 at high pressures. Phys. Rev. B 104, L020504 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, H., Wang, C., Yi, S. & Cho, J.-H. Origin of enhanced chemical precompression in cerium hydride CeH9. Sci. Rep. 10, 16878 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parlinski, K., Li, Z. Q. & Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 78, 4063–4066 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Monserrat, B. Electron–phonon coupling from finite differences. J. Condens. Matter Phys. 30, 083001 (2018).

    Article 

    Google Scholar
     

  • Koçer, C. P., Haule, K., Pascut, G. L. & Monserrat, B. Efficient lattice dynamics calculations for correlated materials with DFT + DMFT. Phys. Rev. B 102, 245104 (2020).

    Article 

    Google Scholar
     

  • Errea, I. et al. Quantum crystal structure in the 250-kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khanal, G. & Haule, K. Correlation driven phonon anomalies in bulk FeSe. Phys. Rev. B 102, 241108 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

    Article 
    CAS 

    Google Scholar
     

  • Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Morel, P. & Anderson, P. W. Calculation of the superconducting state parameters with retarded electron-phonon interaction. Phys. Rev. 125, 1263–1271 (1962).

    Article 

    Google Scholar
     

  • Allen, P. B. & Mitrović, B. Theory of superconducting Tc. Solid State Phys. 37, 1–92 (1983).

    Article 

    Google Scholar
     

  • Margine, E. R. & Giustino, F. Anisotropic Migdal-Eliashberg theory using Wannier functions. Phys. Rev. B 87, 024505 (2013).

    Article 

    Google Scholar
     

  • Plekhanov, E. et al. Computational materials discovery for lanthanide hydrides at high pressure for high temperature superconductivity. Phys. Rev. Res. 4, 013248 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hubbard, J. & Flowers, B. H. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. Ser. A 276, 238–257 (1963).

    Article 

    Google Scholar
     

  • Gull, E. et al. Continuous-time monte carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349–404 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tomczak, J. M. & Biermann, S. Effective band structure of correlated materials: the case of VO2. J. Phys. Condens. Matter 19, 365206 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Z. et al. Correlation-enhanced electron-phonon coupling and superconductivity in (Ba, K)SbO3 superconductors. Phys. Rev. B 105, 014517 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yin, Z. P., Kutepov, A. & Kotliar, G. Correlation-enhanced electron-phonon coupling: applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-Tc superconductors. Phys. Rev. X 3, 021011 (2013).

    CAS 

    Google Scholar
     

  • Mandal, S., Cohen, R. E. & Haule, K. Strong pressure-dependent electron-phonon coupling in FeSe. Phys. Rev. B 89, 220502 (2014).

    Article 

    Google Scholar
     

  • Zou, Q. et al. Correlation enhanced electron-phonon coupling in FeSe/SrTiO3 at a magic angle. arXiv preprint arXiv:https://arxiv.org/abs/2506.22435 (2025).

  • Poliukhin, A., Colonna, N., Libbi, F., Poncé, S. & Marzari, N. Carrier mobilities and electron-phonon interactions beyond DFT. arXiv preprint arXiv:https://arxiv.org/abs/2508.14852 (2025).

  • Yam, Y.-C., Sawatzky, G. A. & Berciu, M. Dressing due to correlations strongly reduces the effect of electron-phonon coupling. Phys. Rev. B 106, 075152 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Coulter, J. & Millis, A. J. Electron-phonon coupling in correlated materials: insights from the hubbard-holstein model. arXiv preprint arXiv:https://arxiv.org/abs/2505.08081 (2025).

  • Zheng, F. et al. Prediction of ambient pressure superconductivity in cubic ternary hydrides with MH6 octahedra. Mater. Today Phys. 42, 101374 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kawamura, M., Hizume, Y. & Ozaki, T. Benchmark of density functional theory for superconductors in elemental materials. Phys. Rev. B 101, 134511 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Worm, P. et al. Spin fluctuations sufficient to mediate superconductivity in nickelates. Phys. Rev. B 109, 235126 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Blaha, P. et al. WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufmann, J. & Held, K. Ana_cont: Python package for analytic continuation. Comput. Phys. Commun. 282, 108519 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Segall, M. D. et al. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. 14, 2717–2744 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 220, 567–570 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. 21, 395502 (2009).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys.:Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomczak, J. M., Miyake, T., Sakuma, R. & Aryasetiawan, F. Effective Coulomb interactions in solids under pressure. Phys. Rev. B 79, 235133 (2009).

    Article 

    Google Scholar
     

  • Abramovitch, D. J., Zhou, J.-J., Mravlje, J., Georges, A. & Bernardi, M. Combining electron-phonon and dynamical mean-field theory calculations of correlated materials: Transport in the correlated metal Sr2RuO4. Phys. Rev. Mater. 7, 093801 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Abramovitch, D. J., Coulter, J., Beck, S. & Millis, A. Electron-phonon coupling in correlated metals: a dynamical mean-field theory study. Phys. Rev. B 112, 075113 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Lloyd-Williams, J. H. & Monserrat, B. Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells. Phys. Rev. B 92, 184301 (2015).

    Article 

    Google Scholar
     

  • Poncé, S., Margine, E., Verdi, C. & Giustino, F. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

    Article 

    Google Scholar
     

  • Lee, H. et al. Electron–phonon physics from first principles using the EPW code. npj Comput. Mater. 9, 156 (2023).

    Article 
    CAS 

    Google Scholar