• Volovik, G. E. Linear momentum in ferromagnets. J. Phys. C 20, L83 (1987).

    Article 
    ADS 

    Google Scholar
     

  • Tatara, G. & Kohno, H. Theory of current-driven domain wall motion: spin transfer versus momentum transfer. Phys. Rev. Lett. 92, 086601 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Barnes, S. E. & Maekawa, S. Generalization of Faraday’s law to include nonconservative spin forces. Phys. Rev. Lett. 98, 246601 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kishine, J.-i., Ovchinnikov, A. S. & Proskurin, I. V. Sliding conductivity of a magnetic kink crystal in a chiral helimagnet. Phys. Rev. B 82, 064407 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 120909 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. T146, 014020 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232–236 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Yang, S. A. et al. Universal electromotive force induced by domain wall motion. Phys. Rev. Lett. 102, 067201 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Shoka, Y. et al. Observation of anisotropic magneto-inductance effect. Appl. Phys. Express 16, 053006 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Matsushima, Y. et al. Emergent magneto-inductance effect in permalloy thin films on flexible polycarbonate substrates at room temperature. Appl. Phys. Lett. 124, 022404 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Emergent magneto-inductance effect in NiFe thin films on glass substrates at room temperature. J. Magn. Magn. Mater. 610, 172500 (2024).

    Article 

    Google Scholar
     

  • Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Finocchio, G., Büttner, F., Tomasello, R., Carpentieri, M. & Kläui, M. Magnetic skyrmions: from fundamental to applications. J. Phys. D 49, 423001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Shibata, J., Tatara, G. & Kohno, H. A brief review of field- and current-driven domain-wall motion. J. Phys. D 44, 384004 (2011).

    Article 

    Google Scholar
     

  • Birch, M. T. et al. Dynamic transition and Galilean relativity of current-driven skyrmions. Nature 633, 554–559 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 

    Google Scholar
     

  • Furuta, S., Moody, S. H., Kado, K., Koshibae, W. & Kagawa, F. Energetic perspective on emergent inductance exhibited by magnetic textures in the pinned regime. npj Spintronics 1, 1 (2023).

    Article 

    Google Scholar
     

  • Kurebayashi, D. & Nomura, K. Theory for spin torque in Weyl semimetal with magnetic texture. Sci. Rep. 9, 5365 (2019).

  • Kurebayashi, D. & Nagaosa, N. Electromagnetic response in spiral magnets and emergent inductance. Commun. Phys. 4, 260 (2021).

    Article 

    Google Scholar
     

  • Yamane, Y., Fukami, S. & Ieda, J. Theory of emergent inductance with spin-orbit coupling effects. Phys. Rev. Lett. 128, 147201 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Araki, Y. & Ieda, J. Emergence of inductance and capacitance from topological electromagnetism. J. Phys. Soc. Jpn. 92, 074705 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Oh, T. & Nagaosa, N. Emergent inductance from spin fluctuations in strongly correlated magnets. Phys. Rev. Lett. 132, 116501 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gaudet, J. et al. Weyl-mediated helical magnetism in NdAlSi. Nat. Mater. 20, 1650–1656 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bouaziz, J., Bihlmayer, G., Patrick, C. E., Staunton, J. B. & Blügel, S. Origin of incommensurate magnetic order in the RAlSi magnetic Weyl semimetals (R = Pr, Nd, Sm). Phys. Rev. B 109, L201108 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Xu, S.-Y. et al. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe. Sci. Adv. 3, e1603266 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yamada, R. et al. Nernst effect of high-mobility Weyl electrons in NdAlSi enhanced by a Fermi surface nesting instability. Phys. Rev. X 14, 021012 (2024).


    Google Scholar
     

  • Kobayashi, K., Ominato, Y. & Nomura, K. Helicity-protected domain-wall magnetoresistance in ferromagnetic Weyl semimetal. J. Phys. Soc. Jpn. 87, 073707 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ominato, Y., Kobayashi, K. & Nomura, K. Anisotropic magnetotransport in Dirac-Weyl magnetic junctions. Phys. Rev. B 95, 085308 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nguyen, A. K., Shchelushkin, R. V. & Brataas, A. Intrinsic domain-wall resistance in ferromagnetic semiconductors. Phys. Rev. Lett. 97, 136603 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Xuan Mei, X., Chen, M. & Li, H. Magnetotransport in magnetic junctions based on tilted Weyl semimetals. J. Appl. Phys. 130, 203901 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Araki, Y. Magnetic textures and dynamics in magnetic Weyl semimetals. Ann. Phys. 532, 1900287 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Li, D.-X., Shao, X.-Q. & Yi, X.-X. Effect of environment on the scattering of electrons by a junction of different topological materials. Ann. Phys. 532, 1900399 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ieda, J. & Yamane, Y. Intrinsic and extrinsic tunability of Rashba spin-orbit coupled emergent inductors. Phys. Rev. B 103, L100402 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Seib, J. & Fähnle, M. Calculation of the Gilbert damping matrix at low scattering rates in Gd. Phys. Rev. B 82, 064401 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Mankovsky, S., Ködderitzsch, D., Woltersdorf, G. & Ebert, H. First-principles calculation of the Gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B 87, 014430 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Bouzidi, D. & Suhl, H. Motion of a Bloch domain wall. Phys. Rev. Lett. 65, 2587 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Stamp, P. C. E. Quantum dynamics and tunneling of domain walls in ferromagnetic insulators. Phys. Rev. Lett. 66, 2802 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Braun, H.-B. & Loss, D. Berry’s phase and quantum dynamics of ferromagnetic solitons. Phys. Rev. B 53, 3237 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Le Maho, Y., Kim, J.-V. & Tatara, G. Spin-wave contributions to current-induced domain wall dynamics. Phys. Rev. B 79, 174404 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Brataas, A., Tserkovnyak, Y. & Bauer, G. E. W. Magnetization dissipation in ferromagnets from scattering theory. Phys. Rev. B 84, 054416 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. K., Tchernyshyov, O., Galitski, V. & Tserkovnyak, Y. Magnon-induced non-Markovian friction of a domain wall in a ferromagnet. Phys. Rev. B 97, 174433 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chudnovsky, E. M., Iglesias, O. & Stamp, P. C. E. Quantum tunneling of domain walls in ferromagnets. Phys. Rev. B 46, 5392 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Braun, H.-B., Kyriakidis, J. & Loss, D. Macroscopic quantum tunneling of ferromagnetic domain walls. Phys. Rev. B 56, 8129 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Wendl, A. et al. Emergence of mesoscale quantum phase transitions in a ferromagnet. Nature 609, 65–70 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Yamada, R. Dataset for: Emergent electric field induced by dissipative sliding dynamics of domain walls in a Weyl magnet. Zenodo https://doi.org/10.5281/zenodo.17188494 (2025).

  • Kurumaji, T. Note on the interpretation of magnetic diffraction in NdAlSi: helical or fan? Preprint at https://arxiv.org/abs/2506.04000 (2025).