• Ali, S. S. et al. Degradation of conventional plastic wastes in the environment: a review on current status of knowledge and future perspectives of disposal. Sci. Total Environ. 771, 144719 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science. 369, 1455–1461 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Golwala, H., Zhang, X., Iskander, S. M. & Smith, A. L. Solid waste: an overlooked source of microplastics to the environment. Sci. Total Environ. 769, 144581 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, P., Chen, L., Shao, L., Zhang, H. & Lü, F. Municipal solid waste (MSW) landfill: a source of microplastics? Evidence of microplastics in landfill leachate. Water Res. 159, 38–45 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, X. et al. A landfill serves as a critical source of microplastic pollution and harbors diverse plastic biodegradation microbial species and enzymes: study in large-scale landfills, China. J. Hazard. Mater. 457, 131676 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tait, P. W. et al. The health impacts of waste incineration: a systematic review. Australian N. Z. J. Public Health 44, 40–48 (2020).

    Article 

    Google Scholar
     

  • Yang, Z. et al. Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 401, 123429 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hahladakis, J. N. & Iacovidou, E. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): focus on recycling. J. Hazard. Mater. 380, 120887 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schade, A. et al. Plastic waste recycling — a chemical recycling perspective. ACS Sustain. Chem. Eng. 12, 12270–12288 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Narancic, T. et al. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 52, 10441–10452 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kim, M. S. et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs. Chem. Rev. 123, 9915–9939 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shen, L., Haufe, J. & Patel, M. K. Product overview and market projection of emerging bio-based plastics PRO-BIP 2009 (Utrecht University, 2009).

  • Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article 

    Google Scholar
     

  • European Bioplastics. Bioplastics market development update 2022. europeanbioplastics.org https://docs.european-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf (2022).

  • Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science. 344, 1109–1113 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Guinée, J. B. et al. Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45, 90–96 (2011).

    Article 

    Google Scholar
     

  • Bishop, G., Styles, D. & Lens, P. N. L. Environmental performance comparison of bioplastics and petrochemical plastics: a review of life cycle assessment (LCA) methodological decisions. Resour. Conserv. Recycling 168, 105451 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walker, S. & Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: a review. J. Clean. Prod. 261, 121158 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Posen, I. D., Jaramillo, P. & Griffin, W. M. Uncertainty in the life cycle greenhouse gas emissions from U.S. production of three biobased polymer families. Environ. Sci. Technol. 50, 2846–2858 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Van Roijen, E. C. & Miller, S. A. A review of bioplastics at end-of-life: linking experimental biodegradation studies and life cycle impact assessments. Resour. Conserv. Recycling 181, 106236 (2022).

    Article 

    Google Scholar
     

  • Pinlova, B. et al. What can we learn about the climate change impacts of polylactic acid from a review and meta-analysis of lifecycle assessment studies? Sustain. Prod. Consum. 48, 396–406 (2024).

    Article 

    Google Scholar
     

  • Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science. 374, 71–76 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO2 emissions. Nature. 612, 272–276 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dokl, M. et al. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 51, 498–518 (2024).

    Article 

    Google Scholar
     

  • Corella-Puertas, E., Hajjar, C., Lavoie, J. & Boulay, A.-M. MarILCA characterization factors for microplastic impacts in life cycle assessment: physical effects on biota from emissions to aquatic environments. J. Clean. Prod. 418, 138197 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Piao, Z., Agyei Boakye, A. A. & Yao, Y. Environmental impacts of biodegradable microplastics. Nat. Chem. Eng. 1, 661–669 (2024).

    Article 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 

    Google Scholar
     

  • Hermann, B. G., Debeer, L., De Wilde, B., Blok, K. & Patel, M. K. To compost or not to compost: carbon and energy footprints of biodegradable materials’ waste treatment. Polym. Degrad. Stab. 96, 1159–1171 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, V. et al. Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J. Clean. Prod. 86, 132–145 (2015).

    Article 

    Google Scholar
     

  • Chae, Y. & An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ. Pollut. 240, 387–395 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. C., Tse, H. F. & Fok, L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci. Total Environ. 566–567, 333–349 (2016).

    Article 

    Google Scholar
     

  • de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).

    Article 

    Google Scholar
     

  • Zhang, G. S., Zhang, F. X. & Li, X. T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci. Total Environ. 670, 1–7 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wan, Y., Wu, C., Xue, Q. & Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654, 576–582 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kwak, J. I. & An, Y.-J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. J. Hazard. Mater. 402, 124034 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J. & Svendsen, C. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ. Pollut. 255, 113174 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lozano, Y. M. & Rillig, M. C. Effects of microplastic fibers and drought on plant communities. Environ. Sci. Technol. 54, 6166–6173 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. New Phytol. 223, 1066–1070 (2019).

    Article 

    Google Scholar
     

  • de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T. & Koelmans, A. A. Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ. Sci. Technol. 54, 11692–11705 (2020).

    Article 

    Google Scholar
     

  • Thompson, R. C. et al. Twenty years of microplastic pollution research — what have we learned? Science 386, eadl2746 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Høiberg, M. A., Woods, J. S. & Verones, F. Global distribution of potential impact hotspots for marine plastic debris entanglement. Ecol. Indic. 135, 108509 (2022).

    Article 

    Google Scholar
     

  • Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Allgeier, A., Yin, D. & Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ. Int. 130, 104938 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Naqash, N., Prakash, S., Kapoor, D. & Singh, R. Interaction of freshwater microplastics with biota and heavy metals: a review. Environ. Chem. Lett. 18, 1813–1824 (2020).

    Article 
    CAS 

    Google Scholar
     

  • OECD. Global Plastics Outlook: Policy Scenarios to 2060 (OECD Publishing, 2022).

  • Plastics Europe. Plastics — The Fast Facts 2024 (Plastics Europe, 2024).

  • Bachmann, M. et al. Towards circular plastics within planetary boundaries. Nat. Sustain. 6, 599–610 (2023).

    Article 

    Google Scholar
     

  • Hottle, T. A., Bilec, M. M. & Landis, A. E. Biopolymer production and end of life comparisons using life cycle assessment. Resour. Conserv. Recycling 122, 295–306 (2017).

    Article 

    Google Scholar
     

  • Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article 

    Google Scholar
     

  • Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cazaudehore, G. et al. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol. Adv. 56, 107916 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gastaldi, E. et al. Degradation and environmental assessment of compostable packaging mixed with biowaste in full-scale industrial composting conditions. Bioresour. Technol. 400, 130670 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Benavides, P. T., Lee, U. & Zarè-Mehrjerdi, O. Life cycle greenhouse gas emissions and energy use of polylactic acid, bio-derived polyethylene, and fossil-derived polyethylene. J. Clean. Prod. 277, 124010 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Papong, S. et al. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 65, 539–550 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Krause, M. J. & Townsend, T. G. Life-cycle assumptions of landfilled polylactic acid underpredict methane generation. Environ. Sci. Technol. Lett. 3, 166–169 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kolstad, J. J., Vink, E. T. H., De Wilde, B. & Debeer, L. Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions. Polym. Degrad. Stab. 97, 1131–1141 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Stloukal, P. et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag. 42, 31–40 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hanson James, L., Yeşiller, N. & Oettle Nicolas, K. Spatial and temporal temperature distributions in municipal solid waste landfills. J. Environ. Eng. 136, 804–814 (2010).

    Article 

    Google Scholar
     

  • Eriksen, M. K., Pivnenko, K., Faraca, G., Boldrin, A. & Astrup, T. F. Dynamic material flow analysis of PET, PE, and PP flows in Europe: evaluation of the potential for circular economy. Environ. Sci. Technol. 54, 16166–16175 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Klotz, M., Haupt, M. & Hellweg, S. Potentials and limits of mechanical plastic recycling. J. Ind. Ecol. 27, 1043–1059 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cabernard, L., Pfister, S., Oberschelp, C. & Hellweg, S. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. 5, 139–148 (2022).

    Article 

    Google Scholar
     

  • Meng, F., Brandão, M. & Cullen, J. M. Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases. Environ. Sci. Technol. 58, 2716–2727 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Luan, X. et al. Greenhouse gas emissions associated with plastics in China from 1950 to 2060. Resour. Conserv. Recycling 197, 107089 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Anshassi, M., Smallwood, T. & Townsend, T. G. Life cycle GHG emissions of MSW landfilling versus incineration: expected outcomes based on US landfill gas collection regulations. Waste Manag. 142, 44–54 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Posen, I. D., Jaramillo, P., Landis, A. E. & Griffin, W. M. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later. Environ. Res. Lett. 12, 034024 (2017).

    Article 

    Google Scholar
     

  • Wang, X.-Y., Gao, Y. & Tang, Y. Sustainable developments in polyolefin chemistry: progress, challenges, and outlook. Prog. Polym. Sci. 143, 101713 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ran, H., Zhang, S., Ni, W. & Jing, Y. Precise activation of C–C bonds for recycling and upcycling of plastics. Chem. Sci. 15, 795–831 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Somoza-Tornos, A. et al. Realizing the potential high benefits of circular economy in the chemical industry: ethylene monomer recovery via polyethylene pyrolysis. ACS Sustain. Chem. Eng. 8, 3561–3572 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vogt, B. D., Stokes, K. K. & Kumar, S. K. Why is recycling of postconsumer plastics so challenging? ACS Appl. Polym. Mater. 3, 4325–4346 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Burkart, M. D., Hazari, N., Tway, C. L. & Zeitler, E. L. Opportunities and challenges for catalysis in carbon dioxide utilization. ACS Catal. 9, 7937–7956 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, J. et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 49, 1385–1413 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).

    Article 

    Google Scholar
     

  • Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 355, 1296–1299 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Why carbon pricing is not sufficient to mitigate climate change — and how ‘sustainability transition policy’ can help. Proc. Natl Acad. Sci. USA 117, 8664–8668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Silva, A. L. P. et al. Microplastics in landfill leachates: the need for reconnaissance studies and remediation technologies. Case Stud. Chem. Environ. Eng. 3, 100072 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L. & Zhao, R. Microplastics in landfill leachate: sources, detection, occurrence, and removal. Environ. Sci. Ecotechnol. 16, 100256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kookos, I. K., Koutinas, A. & Vlysidis, A. Life cycle assessment of bioprocessing schemes for poly(3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour. Conserv. Recycling 141, 317–328 (2019).

    Article 

    Google Scholar
     

  • Muiruri, J. K. et al. Poly(hydroxyalkanoates): production, applications and end-of-life strategies–life cycle assessment nexus. ACS Sustain. Chem. Eng. 10, 3387–3406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Suwanmanee, U. et al. Life cycle assessment of single use thermoform boxes made from polystyrene (PS), polylactic acid, (PLA), and PLA/starch: cradle to consumer gate. Int. J. Life Cycle Assess. 18, 401–417 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Moretti, C. et al. Cradle-to-grave life cycle assessment of single-use cups made from PLA, PP and PET. Resour. Conserv. Recycling 169, 105508 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2021).

  • Tamburini, E. et al. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles — what is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 196, 110974 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Beigbeder, J., Soccalingame, L., Perrin, D., Bénézet, J.-C. & Bergeret, A. How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Manag. 83, 184–193 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, L. et al. Biodegradable mulch film enhances the environmental sustainability compared with traditional polyethylene film from multidimensional perspectives. Chem. Eng. J. 492, 152219 (2024).

    Article 
    CAS 

    Google Scholar
     

  • van der Harst, E., Potting, J. & Kroeze, C. Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Sci. Total Environ. 494-495, 129–143 (2014).

    Article 

    Google Scholar
     

  • Mhaddolkar, N., Lodato, C., Tischberger-Aldrian, A., Vollprecht, D. & Fruergaard Astrup, T. Biodegradable plastics — where to throw? A life cycle assessment of waste collection and management pathways in Austria. Waste Manag. 190, 578–592 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Austin, K. G., Jones, J. P. H. & Clark, C. M. A review of domestic land use change attributable to U.S. biofuel policy. Renew. Sustain. Energy Rev. 159, 112181 (2022).

    Article 

    Google Scholar
     

  • Kim, T., Bhatt, A., Tao, L. & Benavides, P. T. Life cycle analysis of polylactic acids from different wet waste feedstocks. J. Clean. Prod. 380, 135110 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Prussi, M. et al. CORSIA: the first internationally adopted approach to calculate life-cycle GHG emissions for aviation fuels. Renew. Sustain. Energy Rev. 150, 111398 (2021).

    Article 
    CAS 

    Google Scholar
     

  • UNEP. Mapping of Global Plastics Value Chain and Plastics Losses to the Environment (with a Particular Focus on Marine Environment) (United Nations Environment Programme (UNEP), 2018).

  • Heller, M. C., Mazor, M. H. & Keoleian, G. A. Plastics in the US: toward a material flow characterization of production, markets and end of life. Environ. Res. Lett. 15, 094034 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jaikumar, G., Baas, J., Brun, N. R., Vijver, M. G. & Bosker, T. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress. Environ. Pollut. 239, 733–740 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. L. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ. Sci. Technol. 51, 13397–13406 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cong, Y. et al. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere. 228, 93–100 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Askham, C. et al. Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. Sci. Total Environ. 859, 160038 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Schwarz, A. E. et al. Microplastic aquatic impacts included in life cycle assessment. Resour. Conserv. Recycling 209, 107787 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Maga, D. et al. Methodology to address potential impacts of plastic emissions in life cycle assessment. Int. J. Life Cycle Assess. 27, 469–491 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Saling, P., Gyuzeleva, L., Wittstock, K., Wessolowski, V. & Griesshammer, R. Life cycle impact assessment of microplastics as one component of marine plastic debris. Int. J. Life Cycle Assess. 25, 2008–2026 (2020).

    Article 

    Google Scholar
     

  • Zhao, X. & You, F. Life cycle assessment of microplastics reveals their greater environmental hazards than mismanaged polymer waste losses. Environ. Sci. Technol. 56, 11780–11797 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rosenbaum, R. K. et al. USEtox — the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–546 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Pellengahr, F. et al. Modeling marine microplastic emissions in life cycle assessment: characterization factors for biodegradable polymers and their application in a textile case study. Front. Toxicol. 7, 1494220 (2025).

    Article 

    Google Scholar
     

  • Kawecki, D. & Nowack, B. Polymer-specific modeling of the environmental emissions of seven commodity plastics as macro- and microplastics. Environ. Sci. Technol. 53, 9664–9676 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Beiras, R., Verdejo, E., Campoy-López, P. & Vidal-Liñán, L. Aquatic toxicity of chemically defined microplastics can be explained by functional additives. J. Hazard. Mater. 406, 124338 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lavoie, J., Boulay, A.-M. & Bulle, C. Aquatic micro- and nano-plastics in life cycle assessment: development of an effect factor for the quantification of their physical impact on biota. J. Ind. Ecol. 26, 2123–2135 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khalid, N., Aqeel, M., Noman, A., Khan, S. M. & Akhter, N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 290, 118104 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coast. Shelf Sci. 178, 189–195 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Henderson, A. D. et al. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 701–709 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Guo, J.-J. et al. Source, migration and toxicology of microplastics in soil. Environ. Int. 137, 105263 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, S. et al. Review on migration, transformation and ecological impacts of microplastics in soil. Appl. Soil Ecol. 176, 104486 (2022).

    Article 

    Google Scholar
     

  • Wang, W., Ge, J., Yu, X. & Li, H. Environmental fate and impacts of microplastics in soil ecosystems: progress and perspective. Sci. Total Environ. 708, 134841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Born, M. P., Brüll, C. & Schüttrumpf, H. Implications of a new test facility for fragmentation investigations on virgin (micro)plastics. Environ. Sci. Technol. 57, 10393–10403 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bao, R. et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media. J. Hazard. Mater. 439, 129686 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brizga, J., Hubacek, K. & Feng, K. The unintended side effects of bioplastics: carbon, land, and water footprints. One Earth 3, 45–53 (2020).

    Article 

    Google Scholar
     

  • Morão, A. & de Bie, F. Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. J. Polym. Environ. 27, 2523–2539 (2019).

    Article 

    Google Scholar
     

  • Islam, M. et al. Impact of bioplastics on environment from its production to end-of-life. Process. Saf. Environ. Prot. 188, 151–166 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Oever, M. V. D., Molenveld, K., Zee, M. V. D. & Bos, H. Bio-based and Biodegradable Plastics — Facts and Figures (Wageningen University, 2017).

  • Wang, B.-X., Cortes-Peña, Y., Grady, B. P., Huber, G. W. & Zavala, V. M. Techno-economic analysis and life cycle assessment of the production of biodegradable polyaliphatic–polyaromatic polyesters. ACS Sustain. Chem. Eng. 12, 9156–9167 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, N. et al. Plastic film mulching for water-efficient agricultural applications and degradable films materials development research. Mater. Manuf. Process. 30, 143–154 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Aldas, M. et al. The impact of biodegradable plastics in the properties of recycled polyethylene terephthalate. J. Polym. Environ. 29, 2686–2700 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, J. & Wang, C. Biodegradable plastics: green hope or greenwashing? Mar. Pollut. Bull. 161, 111774 (2020).

    Article 
    CAS 

    Google Scholar
     

  • EEA. Bio-waste in Europe — Turning Challenges into Opportunities (European Environment Agency, 2020).

  • Okori, F., Lederer, J., Komakech, A. J., Schwarzböck, T. & Fellner, J. Plastics and other extraneous matter in municipal solid waste compost: a systematic review of sources, occurrence, implications, and fate in amended soils. Environ. Adv. 15, 100494 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050 (World Bank, 2018).

  • NASEM. Municipal Solid Waste Recycling in the United States: Analysis of Current and Alternative Approaches (National Academies of Sciences, Engineering and Medicine, 2025).

  • European Union. Regulation (EU) 2025/40 of the European Parliament and of the Council of 19 December 2024 on Packaging and Packaging Waste (European Parliament and the Council, 2025).

  • Brooks, A. L. & Havas, V. Strengthening global plastic policy with systems analysis. Nat. Sustain. 8, 714–723 (2025).

    Article 

    Google Scholar
     

  • Del Borghi, A. LCA and communication: environmental product declaration. Int. J. Life Cycle Assess. 18, 293–295 (2013).

    Article 

    Google Scholar
     

  • Moré, F. B., Galindro, B. M. & Soares, S. R. Assessing the completeness and comparability of environmental product declarations. J. Clean. Prod. 375, 133999 (2022).

    Article 

    Google Scholar
     

  • van der Hulst, M. K. et al. Greenhouse gas benefits from direct chemical recycling of mixed plastic waste. Resour. Conserv. Recycling 186, 106582 (2022).

    Article 

    Google Scholar
     

  • Merchan, A. L. et al. Chemical recycling of bioplastics: technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 24, 9428–9449 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Van Roijen, E. & Miller, S. A. Leveraging biogenic resources to achieve global plastic decarbonization by 2050. Nat. Commun. 16, 7659 (2025).

    Article 

    Google Scholar
     

  • EEA. Biodegradable and Compostable Plastics — Challenges and Opportunities (European Environment Agency, 2020).

  • Filiciotto, L. & Rothenberg, G. Biodegradable plastics: standards, policies, and impacts. ChemSusChem 14, 56–72 (2021).

    Article 
    CAS 

    Google Scholar
     

  • European Bioplastics. Fact Sheet: What are Bioplastics? (European Bioplastics, 2022).

  • Saalah, S., Saallah, S., Rajin, M. & Yaser, A. Z. in Advances in Waste Processing Technology (ed. Abu Zahrim, Y.) 127–143 (Springer, 2020).

  • Rosenboom, J.-G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article 

    Google Scholar
     

  • Rujnić-Sokele, M. & Pilipović, A. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manag. Res. 35, 132–140 (2017).

    Article 

    Google Scholar