• Lloyd-Hughes, J. et al. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. J. Phys.: Condens. Matter 33, 353001 (2021).


    Google Scholar
     

  • de la Torre, A. et al. Colloquium: nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys.: Mater. 3, 042006 (2020).


    Google Scholar
     

  • Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Lindner, N. H., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011).

    Article 

    Google Scholar
     

  • Sentef, M. A. et al. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nat. Commun. 6, 7047 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials. Nat. Commun. 8, 13940 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Claassen, M., Jia, C., Moritz, B. & Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nat. Commun. 7, 13074 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article 

    Google Scholar
     

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article 

    Google Scholar
     

  • Aeschlimann, S. et al. Survival of Floquet-Bloch states in the presence of scattering. Nano Lett. 21, 5028–5035 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Park, S. et al. Steady Floquet-Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kobayashi, Y. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023).

  • Uchida, K., Kusaba, S., Nagai, K., Ikeda, T. N. & Tanaka, K. Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe2. Sci. Adv. 8, eabq7281 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bao, C., Tang, P., Sun, D. & Zhou, S. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys. 4, 33–48 (2021).

    Article 

    Google Scholar
     

  • Keunecke, M. et al. Electromagnetic dressing of the electron energy spectrum of Au(111) at high momenta. Phys. Rev. B 102, 161403 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hübener, H., De Giovannini, U. & Rubio, A. Phonon driven Floquet matter. Nano Lett. 18, 1535–1542 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, R.-X. & Das Sarma, S. Anomalous Floquet chiral topological superconductivity in a topological insulator sandwich structure. Phys. Rev. Lett. 127, 067001 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant self-driven exciton-Floquet signatures in time-resolved photoemission spectroscopy of MoS2 from time-dependent GW approach. Proc. Natl Acad. Sci. USA 120, e2301957120 (2023).

    Article 

    Google Scholar
     

  • Perfetto, E. & Stefanucci, G. Floquet topological phase of nondriven p-wave nonequilibrium excitonic insulators. Phys. Rev. Lett. 125, 106401 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Liu, R.-Y. et al. Femtosecond to picosecond transient effects in WSe2 observed by pump-probe angle-resolved photoemission spectroscopy. Sci. Rep. 7, 15981 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. Pump driven normal-to-excitonic insulator transition: Josephson oscillations and signatures of BEC-BCS crossover in time-resolved ARPES. Phys. Rev. Mater. 3, 124601 (2019).

    Article 

    Google Scholar
     

  • Ito, S. et al. Build-up and dephasing of Floquet-Bloch bands on subcycle timescales. Nature 616, 696–701 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Parmenter, R. H. & Henson, W. R. Superconductive properties of the excitonic insulator. Phys. Rev. 2, 140–147 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022).

    Article 

    Google Scholar
     

  • Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article 

    Google Scholar
     

  • Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bussolotti, F., Yang, J., Kawai, H., Chee, J. Y. & Goh, K. E. J. Influence of many-body effects on hole quasiparticle dynamics in a WS2 monolayer. Phys. Rev. B 103, 045412 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Madéo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Man, M. K. L. et al. Experimental measurement of the intrinsic excitonic wave function. Sci. Adv. 7, eabg0192 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Karni, O. et al. Structure of the moiré exciton captured by imaging its electron and hole. Nature 603, 247–252 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schönhense, G., Medjanik, K. & Elmers, H.-J. Space-, time- and spin-resolved photoemission. J. Electron Spectrosc. Relat. Phenom. 200, 94–118 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Medjanik, K. et al. Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016).

    Article 

    Google Scholar
     

  • Grubišić Čabo, A. et al. Observation of ultrafast free carrier dynamics in single layer MoS2. Nano Lett. 15, 5883–5887 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F., Ziffer, M. E., Hansen, K. R., Wang, J. & Zhu, X. Direct determination of band-gap renormalization in the photoexcited monolayer MoS2. Phys. Rev. Lett. 122, 246803 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F., Li, Q. & Zhu, X.-Y. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lin, Y. et al. Exciton-driven renormalization of quasiparticle band structure in monolayer MoS2. Phys. Rev. B 106, L081117 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wallauer, R. et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett. 21, 5867–5873 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dong, S. et al. Direct measurement of key exciton properties: energy, dynamics, and spatial distribution of the wave function. Nat. Sci. 1, e10010 (2021).

    Article 

    Google Scholar
     

  • Schmitt, D. et al. Formation of moiré interlayer excitons in space and time. Nature 608, 499–503 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Karni, O., Esin, I. & Dani, K. M. Through the lens of a momentum microscope: viewing light-induced quantum phenomena in 2D materials. Adv. Mater. 35, e2204120 (2022).

    Article 

    Google Scholar
     

  • Jakubczyk, T. et al. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater. 5, 031007 (2018).

    Article 

    Google Scholar
     

  • Rustagi, A. & Kemper, A. F. Photoemission signature of excitons. Phys. Rev. B 97, 235310 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kwong, N. H., Rupper, G. & Binder, R. Self-consistent T-matrix theory of semiconductor light-absorption and luminescence. Phys. Rev. B 79, 155205 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yoshioka, T. & Asano, K. Classical-quantum crossovers in quasi-one-dimensional electron-hole systems: exciton-Mott physics and interband optical spectra. Phys. Rev. B 86, 115314 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Perfetto, E., Sangalli, D., Marini, A. & Stefanucci, G. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra. Phys. Rev. B 94, 245303 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Attaccalite, C., Grüning, M. & Marini, A. Real-time approach to the optical properties of solids and nanostructures: time-dependent Bethe-Salpeter equation. Phys. Rev. B 84, 245110 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chan, Y.-H., Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions. Proc. Natl Acad. Sci. USA 118, e1906938118 (2021).

    Article 

    Google Scholar
     

  • Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    Article 

    Google Scholar
     

  • Ruppert, C., Chernikov, A., Hill, H. M., Rigosi, A. F. & Heinz, T. F. The role of electronic and phononic excitation in the optical response of monolayer WS2 after ultrafast excitation. Nano Lett. 17, 644–651 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Morita, Y., Yoshioka, K. & Kuwata-Gonokami, M. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor. Nat. Commun. 13, 5388 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Murotani, Y. et al. Light-driven electron-hole Bardeen-Cooper-Schrieffer-like state in bulk GaAs. Phys. Rev. Lett. 123, 197401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Perfetto, E., Bianchi, S. & Stefanucci, G. Time-resolved ARPES spectra of nonequilibrium excitonic insulators: revealing macroscopic coherence with ultrashort pulses. Phys. Rev. B 101, 041201 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Glutsch, S. & Zimmermann, R. Coherent optics for pumping near the absorption edge. Phys. Rev. B 45, 5857–5862 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Chu, H. & Chang, Y. C. Theory of optical spectra of exciton condensates. Phys. Rev. B 54, 5020–5028 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Östreich, T. & Schönhammer, K. Non-stationary excitonic-insulator states in photoexcited semiconductors. Z. Phys. B 91, 189–197 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Liu, D. E., Levchenko, A. & Baranger, H. U. Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems. Phys. Rev. Lett. 111, 047002 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Giovannini, U. D. & Hübener, H. Floquet analysis of excitations in materials. J. Phys.: Mater. 3, 012001 (2020).


    Google Scholar
     

  • Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article 
    ADS 

    Google Scholar
     

  • McCreary, K. M., Hanbicki, A. T., Jernigan, G. G., Culbertson, J. C. & Jonker, B. T. Synthesis of large-area WS2 monolayers with exceptional photoluminescence. Sci. Rep. 6, 19159 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Medina Silva, H. & Goh, K. E. J. A blade structure to direct precursor gases for the growth of uniform large area TMDCS. Patent no. WO/2022/186776, Singapore (2022).

  • Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).


    Google Scholar
     

  • Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    Article 
    ADS 

    Google Scholar
     

  • da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rocca, D., Lu, D. & Galli, G. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 133, 164109 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Rabani, E., Baer, R. & Neuhauser, D. Time-dependent stochastic Bethe-Salpeter approach. Phys. Rev. B 91, 235302 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stefanucci, G. & van Leeuwen, R. Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction (Cambridge Univ. Press, 2025).