• Miessen, A., Ollitrault, P. J., Tacchino, F. & Tavernelli, I. Quantum algorithms for quantum dynamics. Nat. Comput. Sci. 3, 25–37 (2023).

    Article 

    Google Scholar
     

  • Fisher, M. P. A., Khemani, V., Nahum, A. & Vijay, S. Random quantum circuits. Annu. Rev. Condens. Matter Phys. 14, 335–379 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hangleiter, D. & Eisert, J. Computational advantage of quantum random sampling. Rev. Modern Phys. 95, 035001 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, Y., Chen, X. & Fisher, M. P. A. Quantum zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).


    Google Scholar
     

  • Mi, X. et al. Time-crystalline eigenstate order on a quantum processor. Nature 601, 531–536 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Sünderhauf, C., Pérez-García, D., Huse, D. A., Schuch, N. & Cirac, J. I. Localization with random time-periodic quantum circuits. Phys. Rev. B 98, 134204 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Garratt, S. J. & Chalker, J. T. Many-body delocalization as symmetry breaking. Phys. Rev. Lett. 127, 026802 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Morningstar, A., Colmenarez, L., Khemani, V., Luitz, D. J. & Huse, D. A. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B 105, 174205 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Vanicat, M., Zadnik, L. & Prosen, T. Integrable trotterization: local conservation laws and boundary driving. Phys. Rev. Lett. 121, 030606 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chan, A., De Luca, A. & Chalker, J. T. Solution of a minimal model for many-body quantum chaos. Phys. Rev. X 8, 041019 (2018).


    Google Scholar
     

  • Bertini, B., Kos, P. & Prosen, T. Exact spectral form factor in a minimal model of many-body quantum chaos. Phys. Rev. Lett. 121, 264101 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bertini, B., Kos, P. & Prosen, T. Random matrix spectral form factor of dual-unitary quantum circuits. Commun. Math. Phys. 387, 597–620 (2021).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bertini, B., Kos, P. & Prosen, T. Exact correlation functions for dual-unitary lattice models in 1 + 1 dimensions. Phys. Rev. Lett. 123, 210601 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Gopalakrishnan, S. & Lamacraft, A. Unitary circuits of finite depth and infinite width from quantum channels. Phys. Rev. B 100, 064309 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Piroli, L., Bertini, B., Cirac, J. I. & Prosen, T. Exact dynamics in dual-unitary quantum circuits. Phys. Rev. B 101, 094304 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bertini, B., Kos, P. & Prosen, T. Operator entanglement in local quantum circuits I: chaotic dual-unitary circuits. SciPost Physics 8, 067 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ippoliti, M. & Khemani, V. Postselection-free entanglement dynamics via spacetime duality. Phys. Rev. Lett. 126, 060501 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Suzuki, R., Mitarai, K. & Fujii, K. Computational power of one-and two-dimensional dual-unitary quantum circuits. Quantum 6, 631 (2022).

    Article 

    Google Scholar
     

  • Claeys, P. W. & Lamacraft, A. Maximum velocity quantum circuits. Phys. Rev. Res. 2, 033032 (2020).

    Article 

    Google Scholar
     

  • Bertini, B. & Piroli, L. Scrambling in random unitary circuits: exact results. Phys. Rev. B 102, 064305 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chertkov, E. et al. Holographic dynamics simulations with a trapped-ion quantum computer. Nat. Phys. 18, 1074–1079 (2022).

    Article 

    Google Scholar
     

  • Bertini, B., Kos, P. & Prosen, T. Entanglement spreading in a minimal model of maximal many-body quantum chaos. Phys. Rev. X 9, 021033 (2019).


    Google Scholar
     

  • Zhou, T. & Harrow, A. W. Maximal entanglement velocity implies dual unitarity. Phys. Rev. B 106, L201104 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mi, X. et al. Information scrambling in quantum circuits. Science 374, 1479–1483 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Keenan, N., Robertson, N. F., Murphy, T., Zhuk, S. & Goold, J. Evidence of Kardar–Parisi–Zhang scaling on a digital quantum simulator. npj Quantum Inf. 9, 72 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Robledo-Moreno, J. et al. Chemistry beyond the scale of exact diagonalization on a quantum-centric supercomputer. Sci. Adv. 11, eadu9991 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Shinjo, K., Seki, K., Shirakawa, T., Sun, R.-Y. & Yunoki, S. Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer. Preprint at https://arxiv.org/abs/2403.16718 (2024).

  • Farrell, R. C., Illa, M., Ciavarella, A. N. & Savage, M. J. Quantum simulations of hadron dynamics in the schwinger model using 112 qubits. Phys. Rev. D 109, 114510 (2024).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shtanko, O. et al. Uncovering local integrability in quantum many-body dynamics. Nat. Commun. 16, 2552 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).


    Google Scholar
     

  • Kandala, A. et al. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 491–495 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Van Den Berg, E., Minev, Z. K., Kandala, A. & Temme, K. Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors. Nat. Phys. 19, 1116–1121 (2023).

    Article 

    Google Scholar
     

  • Zimborás, Z. et al. Myths around quantum computation before full fault tolerance: what no-go theorems rule out and what they don’t. Preprint at https://arxiv.org/abs/2501.05694 (2025).

  • Govia, L. et al. Bounding the systematic error in quantum error mitigation due to model violation. PRX Quantum 6, 010354 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Filippov, S., Leahy, M., Rossi, M. A. C. & García-Pérez, G. Scalable tensor-network error mitigation for near-term quantum computing. Preprint at https://arxiv.org/abs/2307.11740 (2023).

  • Filippov, S. N., Maniscalco, S. & García-Pérez, G. Scalability of quantum error mitigation techniques: from utility to advantage. Preprint at https://arxiv.org/abs/2403.13542 (2024).

  • Prosen, T. General relation between quantum ergodicity and fidelity of quantum dynamics. Phys. Rev. E 65, 036208 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Akila, M., Waltner, D., Gutkin, B. & Guhr, T. Particle-time duality in the kicked ising spin chain. J. Phys. A 49, 375101 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Huang, H.-Y., Kueng, R. & Preskill, J. Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16, 1050–1057 (2020).

    Article 

    Google Scholar
     

  • Glos, A. et al. Adaptive POVM implementations and measurement error mitigation strategies for near-term quantum devices. Preprint at https://arxiv.org/abs/2208.07817 (2022).

  • Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Knill, E. Fault-tolerant postselected quantum computation: threshold analysis. Preprint at https://arxiv.org/abs/quant-ph/0404104 (2004).

  • Wallman, J. J. & Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 94, 052325 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hashim, A. et al. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X 11, 041039 (2021).


    Google Scholar
     

  • Chen, S. et al. The learnability of Pauli noise. Nat. Commun. 14, 52 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, S., Zhang, Z., Jiang, L. & Flammia, S. T. Efficient self-consistent learning of gate set Pauli noise. Preprint at https://arxiv.org/abs/2410.03906 (2024).

  • Kim, Y. et al. Error mitigation with stabilized noise in superconducting quantum processors. Nat. Commun. 16, 8439 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Ljubotina, M., Zadnik, L. & Prosen, T. Ballistic spin transport in a periodically driven integrable quantum system. Phys. Rev. Lett. 122, 150605 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Long, D. M., Crowley, P. J. D., Khemani, V. & Chandran, A. Phenomenology of the prethermal many-body localized regime. Phys. Rev. Lett. 131, 106301 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Eddins, A., Tran, M. C. & Rall, P. Lightcone shading for classically accelerated quantum error mitigation. Preprint at https://arxiv.org/abs/2409.04401 (2024).

  • Robertson, N. F. et al. Tensor network enhanced dynamic multiproduct formulas. PRX Quantum 6, 020360 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Stehlik, J. et al. Tunable coupling architecture for fixed-frequency transmon superconducting qubits. Phys. Rev. Lett. 127, 080505 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wack, A. et al. Scale, quality, and speed: three key attributes to measure the performance of near-term quantum computers. Preprint at https://arxiv.org/abs/2110.14108 (2021).

  • Rajagopala, A. D. et al. Hardware-assisted parameterized circuit execution. Preprint at https://arxiv.org/abs/2409.03725 (2024).

  • Van Den Berg, E., Minev, Z. K. & Temme, K. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A 105, 032620 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Tsubouchi, K., Sagawa, T. & Yoshioka, N. Universal cost bound of quantum error mitigation based on quantum estimation theory. Phys. Rev. Lett. 131, 210601 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Data and code for: dynamical simulations of many-body quantum chaos on a quantum computer. Figshare https://doi.org/10.6084/m9.figshare.29069759 (2025).