• McMichael, C., Dasgupta, S., Ayeb-Karlsson, S. & Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 15, 123005 (2020).

    Article 

    Google Scholar
     

  • Cozannet, L. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 9 (Cambridge Univ. Press, 2021).

  • Haasnoot, M. et al. Adaptation to uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the coastal adaptation strategy of the Netherlands. Environ. Res. Lett. 15, 034007 (2020).

    Article 

    Google Scholar
     

  • Han, W. et al. Impacts of basin-scale climate modes on coastal sea level: a review. Surv. Geophys. 40, 1493–1541 (2019).

    Article 

    Google Scholar
     

  • Roberts, C. D. et al. On the drivers and predictability of seasonal-to-interannual variations in regional sea level. J. Clim. 29, 7565–7585 (2016).

    Article 

    Google Scholar
     

  • Boucharel, J. et al. Contrasted influence of climate modes teleconnections to the interannual variability of coastal sea level components—implications for statistical forecasts. Clim. Dyn. 61, 4011–4032 (2023).

    Article 

    Google Scholar
     

  • Meyssignac, B. et al. Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993–2011. Surv. Geophys. 38, 187–215 (2017).

    Article 

    Google Scholar
     

  • Todd, A. et al. Ocean-only FAFMIP: understanding regional patterns of ocean heat content and dynamic sea level change. J. Adv. Model. Earth Syst. 12, e2019MS002027 (2020).

    Article 

    Google Scholar
     

  • Kirezci, E. et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. Rep. 10, 11629 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boucharel, J., Almar, R., Kestenare, E. & Jin, F.-F. On the influence of ENSO complexity on Pan-Pacific coastal wave extremes. Proc. Natl Acad. Sci. USA 118, e2115599118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Marcos, M. et al. Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett. 46, 4356–4364 (2019).

    Article 

    Google Scholar
     

  • Dodet, G. et al. The contribution of wind-generated waves to coastal sea-level changes. Surv. Geophys. 40, 1563–1601 (2019).

    Article 

    Google Scholar
     

  • Melet, A. et al. Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans 125, e2020JC016078 (2020).

    Article 

    Google Scholar
     

  • Almar, R. et al. A global analysis of extreme coastal water levels with implications for potential coastal overtopping. Nat. Commun. 12, 3775 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Melet, A. et al. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Change 8, 234–239 (2018).

    Article 

    Google Scholar
     

  • Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).

    Article 

    Google Scholar
     

  • Vitousek, S. et al. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

    Article 

    Google Scholar
     

  • Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 9, 2360 (2018).

    Article 

    Google Scholar
     

  • Woodworth, P. L. et al. Forcing factors affecting sea level changes at the coast. Surv. Geophys. 40, 1351–1397 (2019).

    Article 

    Google Scholar
     

  • McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lin, I.-I. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 17 (American Geophysical Union, 2020).

  • Taschetto, A. S. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. et al.) Ch. 14 (American Geophysical Union, 2020).

  • Barnard, P. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Barnard, P. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Boucharel, J., Almar, R. & Dewitte, B. Seasonal forecasts of the world’s coastal waterline: what to expect from the coming El Niño? npj Clim. Atmos. Sci. 7, 37 (2024).

    Article 

    Google Scholar
     

  • Zhao, S., Li, N., Jin, F.-F., Cheung, K. F. & Yang, Z. Contrast and predictability of island-scale El Niño influences on Hawaii wave climate. Geophys. Res. Lett. 52, 2024GL113127 (2025).

    Article 

    Google Scholar
     

  • Almar, R. et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 14, 3133 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mortlock, T. R. & Goodwin, I. D. Impacts of enhanced central Pacific ENSO on wave climate and headland–bay beach morphology. Cont. Shelf Res. 120, 14–25 (2016).

    Article 

    Google Scholar
     

  • Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño-Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans 125, e2020JC016464 (2020).

    Article 

    Google Scholar
     

  • Kug, J. S. et al. Two types of El Niño: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    Article 

    Google Scholar
     

  • Yeh, S.-W. et al. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56, 185–206 (2018).

    Article 

    Google Scholar
     

  • Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).

    Article 

    Google Scholar
     

  • Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, 676–679 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Chafik, L., Nilsen, J. E. Ø & Dangendorf, S. Impact of North Atlantic teleconnection patterns on northern European sea level. J. Mar. Sci. Eng. 5, 43 (2017).

    Article 

    Google Scholar
     

  • Dodet, G., Bertin, X. & Taborda, R. Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Modell. 31, 120–131 (2010).

    Article 

    Google Scholar
     

  • Almar, R., Kestenare, E. & Boucharel, J. On the key influence of the remote climate variability from Tropical Cyclones, North and South Atlantic mid-latitude storms on the Senegalese coast (West Africa). Env. Res. Comm. https://doi.org/10.1088/2515-7620/ab2ec6 (2019).

  • Menendez, M., Mendez, F. J. & Losada, I. J. Forecasting seasonal to interannual variability in extreme sea levels. ICES J. Mar. Sci. 66, 1490–1496 (2009).

    Article 

    Google Scholar
     

  • Muis, S., Haigh, I. D., Guimarães Nobre, G., Aerts, J. C. J. H. & Ward, P. J. Influence of El Niño–Southern Oscillation on global coastal flooding. Earths Future 6, 1311–1322 (2018).

    Article 

    Google Scholar
     

  • Rashid, M. M., Wahl, T. & Chambers, D. P. Extreme sea level variability dominates coastal flood risk changes at decadal time scales. Environ. Res. Lett. 16, 024026 (2021).

    Article 

    Google Scholar
     

  • Marcos, M., Calafat, F. M., Berihuete, Á & Dangendorf, S. Long-term variations in global sea level extremes. J. Geophys. Res. Oceans 120, 8115–8134 (2015).

    Article 

    Google Scholar
     

  • Mysak, L. A., Ingram, R. G., Wang, J. & van der Baaren, A. The anomalous sea-ice extent in Hudson Bay, Baffin Bay and the Labrador Sea during three simultaneous NAO and ENSO episodes. Atmos. Ocean 34, 313–343 (1996).

    Article 

    Google Scholar
     

  • Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article 

    Google Scholar
     

  • Tang, X., Li, J., Zhang, Y., Li, Y. & Zhao, S. Synergistic effect of El Niño and negative phase of North Atlantic Oscillation on winter precipitation in the southeastern United States. J. Clim. 36, 1767–1791 (2023).

    Article 

    Google Scholar
     

  • Liu, C. et al. Combined influence of ENSO and North Atlantic Oscillation (NAO) on Eurasian Steppe during 1982–2018. Sci. Total Environ. 892, 164735 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, S. et al. Explainable El Niño predictability from climate mode interactions. Nature 630, 891–898 (2024).

    Article 
    CAS 

    Google Scholar
     

  • André, C., Monfort, D., Bouzit, M. & Vinchon, C. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events. Nat. Hazards Earth Syst. Sci. 13, 2003–2012 (2013).

    Article 

    Google Scholar
     

  • The Christmas Flood of 1964 (USGS, 2014); https://www.usgs.gov/news/featured-story/christmas-flood-1964

  • Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 110, 354–384 (1982).

    Article 

    Google Scholar
     

  • Larkin, N. K. & Harrison, D. E. ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J. Clim. 15, 1118–1140 (2002).

    Article 

    Google Scholar
     

  • Stein, K., Timmermann, A., Schneider, N., Jin, F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Clim. 27, 5285–5310 (2014).

    Article 

    Google Scholar
     

  • Scaife, A. A. et al. ENSO affects the North Atlantic Oscillation 1 year later. Science 386, 82–86 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Geng, X., Zhao, J. & Kug, J. S. ENSO-driven abrupt phase shift in North Atlantic Oscillation in early January. npj Clim. Atmos. Sci. 6, 80 (2023).

    Article 

    Google Scholar
     

  • Toniazzo, T. & Scaife, A. A. The influence of ENSO on winter North Atlantic climate. Geophys. Res. Lett. 33, L24704 (2006).

    Article 

    Google Scholar
     

  • Scaife, A. A. et al. Predictability of European winter 2015/2016. Atmos. Sci. Lett. 18, 38–44 (2017).

    Article 

    Google Scholar
     

  • Hardiman, S. C. et al. Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett. 21, e1005 (2020).

    Article 

    Google Scholar
     

  • Geng, X., Kug, J. S. & Kosaka, Y. Future changes in the wintertime ENSO–NAO teleconnection under greenhouse warming. npj Clim. Atmos. Sci. 7, 81 (2024).

    Article 

    Google Scholar
     

  • Jiang, F., Zhang, W., Boucharel, J. & Jin, F.-F. Tropical origins of the Pacific Meridional Mode associated with the nonlinear interaction of ENSO with the annual cycle. Geophys. Res. Lett. 50, e2023GL106225 (2023).

    Article 

    Google Scholar
     

  • Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett. 44, 2481–2492 (2017).

    Article 

    Google Scholar
     

  • Bevacqua, E. et al. More meteorological events that drive compound coastal flooding are projected under climate change. Commun. Earth Environ. 1, 47 (2020).

    Article 

    Google Scholar
     

  • Marchesiello, P. et al. 3D wave-resolving simulation of sandbar migration. Ocean Modell. 180, 102127 (2022).

    Article 

    Google Scholar
     

  • Bergsma, E. W. et al. Coastal morphology from space: a showcase of monitoring the topography–bathymetry continuum. Remote Sens. Environ. 261, 112469 (2021).

    Article 

    Google Scholar
     

  • Tozer, C. R. et al. A tale of two Novembers: confounding influences on La Niña’s relationship with rainfall in Australia. Mon. Weather Rev. 152, 1977–1996 (2024).

    Article 

    Google Scholar
     

  • Fogt, R. L. & Marshall, G. J. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wilet Interdiscip. Rev. Clim. Change 11, e652 (2020).

    Article 

    Google Scholar
     

  • Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019).

    Article 

    Google Scholar
     

  • Pujol, M.-I. et al. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 12, 1067–1090 (2016).

    Article 

    Google Scholar
     

  • Le Traon, P. Y. et al. From observation to information and users: the Copernicus Marine Service perspective. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00234 (2019).

  • Carrère, L. & Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—comparisons with observations. Geophys. Res. Lett. 30, 1275 (2003).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Pascual, A., Marcos, M. & Gomis, D. Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J. Geophys. Res. 113, C07011 (2008).

    Article 

    Google Scholar
     

  • Ji, T., Li, G. & Liu, R. Historical reconstruction of storm surge activity in the southeastern coastal area of China for the past 60 years. Earth Space Sci. 7, e2019EA001056 (2020).

    Article 

    Google Scholar
     

  • Ablain, M., Cazenave, A., Valladeau, G. & Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Sci. 5, 193–201 (2009).

    Article 

    Google Scholar
     

  • Bij de Vaate, I., Slobbe, D. C. & Verlaan, M. Mapping the spatiotemporal variability in global storm surge water levels using satellite radar altimetry. Ocean Dyn. 74, 169–182 (2024).

    Article 

    Google Scholar
     

  • Bouffard, J. et al. Introduction and assessment of improved coastal altimetry strategies: Case study over the northwestern Mediterranean Sea. In Coastal Altimetry (eds Vignudelli, S. et al.) Ch. 12 (Springer, 2010).

  • Cazenave, C. K. et al. Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Change 65, 83–88 (2009).

    Article 

    Google Scholar
     

  • Le Cann, B. Barotropic tidal dynamics of the Bay of Biscay shelf: observations, numerical modelling and physical interpretation. Cont. Shelf Res. 10, 723–758 (1990).

    Article 

    Google Scholar
     

  • Lyard, F. et al. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. 56, 394–415 (2006).

    Article 

    Google Scholar
     

  • Lyard, F. H., Allain, D. J., Cancet, M., Carrère, L. & Picot, N. FES2014 global ocean tide atlas: design and performance. Ocean Sci. 17, 615–649 (2021).

    Article 

    Google Scholar
     

  • Ramos-Alcántara, J., Gomis, D. & Jordà, G. Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records. Ocean Sci. 18, 1781–1803 (2022).

    Article 

    Google Scholar
     

  • Volkov, D. L., Larnicol, G. & Dorandeu, J. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. 112, C06020 (2007).

    Article 

    Google Scholar
     

  • Kodaira, T., Thompson, K. R. & Bernier, N. B. The effect of density stratification on the prediction of global storm surges. Ocean Dyn. 66, 1733–1743 (2016).

    Article 

    Google Scholar
     

  • Reguero, B. G., Losada, I. J., Díaz-Simal, P., Méndez, F. J. & Beck, M. W. Effects of climate change on exposure to coastal flooding in Latin America and the Caribbean. PLoS ONE 10, e0133409 (2015).

    Article 

    Google Scholar
     

  • Haigh, I. et al. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Sci. Data 3, 160107 (2016).

    Article 

    Google Scholar
     

  • Mawdsley, R. J. & Haigh, I. D. Spatial and temporal variability and long-term trends in skew surges globally. Front. Mar. Sci. 3, 29 (2016).

    Article 

    Google Scholar
     

  • Muis, S. et al. A global reanalysis of storm surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Horsburgh, K. J. & Wilson, C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea. J. Geophys. Res. 112, C08003 (2007).

    Article 

    Google Scholar
     

  • Melet, A., Almar, R. & Meyssignac, B. What dominates sea level at the coast: a case study for the Gulf of Guinea. Ocean Dyn. 66, 623–636 (2016).

    Article 

    Google Scholar
     

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article 

    Google Scholar
     

  • Stockdon, H. F., Holman, R. A., Howd, P. A. & Sallenger, A. H. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53, 573–588 (2006).

    Article 

    Google Scholar
     

  • Iribarren, C. R. & Nogales, C. Protection des ports, In Proc. XVIIth International Navigation Congress, Section II, Communication Vol. 4 31–80 (1949).

  • Tadono, T. et al. Generation of the 30 m-mesh global digital surface model by alos prism, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B4, 157–162 (2016).


    Google Scholar
     

  • Zhang, K. et al. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 225, 290–306 (2019).

    Article 

    Google Scholar
     

  • Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article 

    Google Scholar
     

  • Climate Indices: Monthly Atmospheric and Ocean Time Series (NOAA); https://psl.noaa.gov/data/climateindices/list/

  • DeMaria, M. The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 53, 2076–2088 (1996).

    Article 

    Google Scholar
     

  • Jin, F.-F. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 119–151 (American Geophysical Union, 2020).

  • Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article 

    Google Scholar
     

  • Hasselmann, K. Stochastic climate models part I. Theory. Tellus 28, 473–485 (1976).


    Google Scholar
     

  • Frankignoul, C. & Hasselmann, K. Stochastic climate models, part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    Article 

    Google Scholar
     

  • Stuecker, M. F. The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle. Geosci. Lett. 10, 51 (2023).

    Article 

    Google Scholar
     

  • Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article 

    Google Scholar
     

  • Jin, Y. et al. The Indian Ocean weakens ENSO spring predictability barrier: role of the Indian Ocean basin and dipole modes. J. Clim. 36, 8331–8345 (2023).

    Article 

    Google Scholar
     

  • Hang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    Article 

    Google Scholar
     

  • Saji, N. et al. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Jo, H.-S. et al. Southern Indian Ocean dipole as a trigger for Central Pacific El Niño since the 2000s. Nat. Commun. 13, 6965 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A. & Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures. J. Geophys. Res. 104, 7841–7848 (1999).

    Article 

    Google Scholar
     

  • Zebiak, S. E. Air–Sea Interaction in the Equatorial Atlantic region. J. Clim. 6, 1567–1586 (1993).

    Article 

    Google Scholar
     

  • Ham, Y.-G. et al. Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett. 48, e2021GL093338 (2021).

  • Zhao, S. Extended nonlinear recharge oscillator (XRO) model for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://zenodo.org/records/10681114 (2024).

  • Boucharel, J. et al. Global coastal total water level variability and exceedance statistics (1958–2023). DataSuds https://doi.org/10.23708/OUZPH4 (2025).

  • Biausque, M. Approche multi-proxys de la réponse des plages sableuses ouvertes aux événements de tempêtes, en incluant les phases de récupération. Physique Atmosphérique et Océanique. PhD thesis, Univ. Bordeaux (2018).