• Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).

    Article 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article 

    Google Scholar
     

  • Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article 

    Google Scholar
     

  • Fernández-Pacheco, A. et al. Three-dimensional nanomagnetism. Nat. Commun. 8, 15756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheka, D. D. A perspective on curvilinear magnetism. Appl. Phys. Lett. 118, 230502 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gubbiotti, G. et al. 2025 roadmap on 3D nanomagnetism. J. Phys. Condens. Matter 37, 143502 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Pacheco, A. et al. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Sci. Rep. 3, 1492 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhakina, E. et al. Reconfigurable three-dimensional superconducting nanoarchitectures. Adv. Funct. Mater. 2506057 (2025).

  • Donnelly, C. et al. Element-specific X-ray phase tomography of 3D structures at the nanoscale. Phys. Rev. Lett. 114, 115501 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, F. et al. Non-planar geometrical effects on the magnetoelectrical signal in a three-dimensional nanomagnetic circuit. ACS Nano 15, 6765–6773 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donnelly, C. et al. Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures. Nat. Nanotechnol. 17, 136–142 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farinha, A. M. A., Yang, S.-H., Yoon, J., Pal, B. & Parkin, S. S. P. Interplay of geometrical and spin chiralities in 3D twisted magnetic ribbons. Nature 639, 67–72 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moll, P. J. W. Focused ion beam microstructuring of quantum matter. Annu. Rev. Condens. Matter Phys. 9, 147–162 (2018).

    Article 

    Google Scholar
     

  • Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höflich, K. et al. Roadmap for focused ion beam technologies. Appl. Phys. Rev. 10, 041311 (2023).

    Article 

    Google Scholar
     

  • Turnbull, L. A. et al. Interlinking helical spin textures in nanopatterned chiral magnets. Preprint at https://arxiv.org/abs/2511.11372 (2025).

  • Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakatsuki, R. et al. Nonreciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atzori, M., Train, C., Hillard, E. A., Avarvari, N. & Rikken, G. L. J. A. Magneto-chiral anisotropy: from fundamentals to perspectives. Chirality 33, 844–857 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokouchi, T. et al. Electrical magnetochiral effect induced by chiral spin fluctuations. Nat. Commun. 8, 866 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tanaka, M. et al. Topological kagome magnet Co3Sn2S2 thin flakes with high electron mobility and large anomalous Hall effect. Nano Lett. 20, 7476–7481 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Y. et al. Large linear non-saturating magnetoresistance and high mobility in ferromagnetic MnBi. Nat. Commun. 12, 4576 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto, T. & Nagaosa, N. Chiral anomaly and giant magnetochiral anisotropy in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117, 146603 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Gigantic magnetochiral anisotropy in the topological semimetal ZrTe5. Phys. Rev. Lett. 128, 176602 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S.-Y. et al. Field-modulated anomalous Hall conductivity and planar Hall effect in Co3Sn2S2 nanoflakes. Nano Lett. 20, 7860–7867 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurenbrecher, H. et al. Chiral anisotropic magnetoresistance of ferromagnetic helices. Appl. Phys. Lett. 112, 242401 (2018).

    Article 

    Google Scholar
     

  • Parrott, J. E. A new theory of the size effect in electrical conduction. Proc. Phys. Soc. 85, 1143 (1965).

    Article 

    Google Scholar
     

  • Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349–354 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bachmann, M. D. et al. Directional ballistic transport in the two-dimensional metal PdCoO2. Nat. Phys. 18, 819–824 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shitade, A. & Minamitani, E. Geometric spin–orbit coupling and chirality-induced spin selectivity. New J. Phys. 22, 113023 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Song, A. M. et al. Nonlinear electron transport in an asymmetric microjunction: a ballistic rectifier. Phys. Rev. Lett. 80, 3831–3834 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kida, N. et al. Optical magnetoelectric effect in a submicron patterned magnet. Phys. Rev. Lett. 94, 077205 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Isobe, H. & Nagaosa, N. Toroidal scattering and nonreciprocal transport by magnetic impurities. J. Phys. Soc. Jpn 91, 115001 (2022).

    Article 

    Google Scholar
     

  • Gaididei, Y., Kravchuk, V. P. & Sheka, D. D. Curvature effects in thin magnetic shells. Phys. Rev. Lett. 112, 257203 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ishizuka, H. & Nagaosa, N. Anomalous electrical magnetochiral effect by chiral spin-cluster scattering. Nat. Commun. 11, 2986 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, D., Kitaori, A., Nagaosa, N. & Tokura, Y. Magnetoelectric control of spin helicity and nonreciprocal charge transport in a multiferroic metal. Adv. Mater. 37, 2420614 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, D. et al. Nonreciprocal transport in a room-temperature chiral magnet. Sci. Adv. 11, eadw8023 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, N., Nii, Y., Arisawa, H., Saitoh, E. & Onose, Y. Electric current control of spin helicity in an itinerant helimagnet. Nat. Commun. 11, 1601 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masuda, H. et al. Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film. Nat. Commun. 15, 1999 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • González-Hernández, R., Ritzinger, P., Výborný, K., Železný, J. & Manchon, A. Non-relativistic torque and Edelstein effect in non-collinear magnets. Nat. Commun. 15, 7663 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadeem, M., Fuhrer, M. S. & Wang, X. The superconducting diode effect. Nat. Rev. Phys. 5, 558–577 (2023).

    Article 

    Google Scholar
     

  • Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Krstić, V., Roth, S., Burghard, M., Kern, K. & Rikken, G. L. J. A. Magneto-chiral anisotropy in charge transport through single-walled carbon nanotubes. J. Chem. Phys. 117, 11315–11319 (2002).

    Article 

    Google Scholar
     

  • Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Charge transport and hydrodynamics in materials. Nat. Rev. Mater. 8, 726–741 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ding, L. et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co3Sn2S2. J. Phys. Appl. Phys. 54, 454003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Birch, M. T. et al. Dataset for: Nanosculpted 3D helices of a magnetic Weyl semimetal with switchable nonreciprocal electron transport. Zenodo https://doi.org/10.5281/zenodo.17163308 (2025).