• Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bindoff, N. et al. Changing ocean, marine ecosystems, and dependent communities. In Portner, H.-O. et al. (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (Cambridge University Press, 2019).

  • AIMS. Coral Bleaching Events https://www.aims.gov.au/research-topics/environmental-issues/coral-bleaching/coral-bleaching-events (2024).

  • Masiri, I., Nunez, M. & Weller, E. A 10-year climatology of solar radiation for the Great Barrier Reef: implications for recent mass coral bleaching events. Int. J. Remote Sens. 29, 4443–4462 (2008).

    Article 

    Google Scholar
     

  • Zhao, W., Huang, Y., Siems, S. & Manton, M. The role of clouds in coral bleaching events over the Great Barrier Reef. Geophys. Res. Lett. 48, e2021GL093936 (2021).

    Article 

    Google Scholar
     

  • Karnauskas, K. B. Physical diagnosis of the 2016 Great Barrier Reef bleaching event. Geophys. Res. Lett. 47, e2019GL086177 (2020).

    Article 

    Google Scholar
     

  • Tagliafico, A., Baker, P., Kelaher, B., Ellis, S. & Harrison, D. The effects of shade and light on corals in the context of coral bleaching and shading technologies. Front. Mar. Sci. 9, 919382 (2022).

    Article 

    Google Scholar
     

  • Butcherine, P. et al. Intermittent shading can moderate coral bleaching on shallow reefs. Front. Mar. Sci. 10, 1162896 (2023).

    Article 

    Google Scholar
     

  • Ellis, S. L. et al. Shading responses are species-specific in thermally stressed corals. Front. Mar. Sci. 11, 1333806 (2024).

    Article 

    Google Scholar
     

  • Harrison, D. et al. T14: Environmental Modelling of Large-scale Solar Radiation Management. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. Technical Report (EGUsphere Preprint Repository, 2014).

  • Condie, S. A. et al. Large-scale interventions may delay decline of the Great Barrier Reef. R. Soc. Open Sci. 8, 201296 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tollefson, J. Can artificially altered clouds save the Great Barrier Reef?. Nature 596, 476–478 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Harrison, D. P. An overview of environmental engineering methods for reducing coral bleaching stress. In Oceanographic Processes Coral Reefs: Physical and Biological Links in the Great Barrier Reef (eds Wolanski, E. & Kingsford, M. J.) 403–418 (Taylor and Francis, CRC Press, 2024).

  • Capaldo, K., Corbett, J. J., Kasibhatla, P., Fischbeck, P. & Pandis, S. N. Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature 400, 743–746 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Schreier, M. et al. Impact of ship emissions on the microphysical, optical and radiative properties of marine stratus: a case study. Atmos. Chem. Phys. 6, 4925–4942 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).

    Article 

    Google Scholar
     

  • Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P. & Stier, P. Invisible ship tracks show large cloud sensitivity to aerosol. Nature 610, 101–106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schreier, M., Mannstein, H., Eyring, V. & Bovensmann, H. Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys. Res. Lett. 34, (2007).

  • Parliament of Australia. Policy, Regulatory, Taxation, Administrative and Funding Priorities for Australian Shipping (Parliament of Australia, 2020).

  • Van, T. C. et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions. Environ. Pollut. 237, 1–10 (2017).

  • Jahangiri, S., Nikolova, N. & Tenekedjiev, K. Health risk assessment of engine exhaust emissions within Australian ports: a case study of Port of Brisbane. Environ. Pract. 21, 20–35 (2019).

    Article 

    Google Scholar
     

  • Broome, R. A. et al. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ. Int. 87, 85–93 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Toscano, D., Murena, F., Quaranta, F. & Mocerino, L. Assessment of the impact of ship emissions on air quality based on a complete annual emission inventory using AIS data for the port of Naples. Ocean Eng. 232, 109166 (2021).

    Article 

    Google Scholar
     

  • Karl, M. et al. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys. 19, 7019–7053 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Viana, M. et al. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 90, 96–105 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Influence of ship emissions on urban air quality: a comprehensive study using highly time-resolved online measurements and numerical simulation in Shanghai. Environ. Sci. Technol. 51, 202–211 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Shipping emissions and their impacts on air quality in China. Sci. Total Environ. 581, 186–198 (2017).

    Article 

    Google Scholar
     

  • Chen, C., Saikawa, E., Comer, B., Mao, X. & Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) region, China, in 2015, with projections to 2030. GeoHealth 3, 284–306 (2019).

    Article 

    Google Scholar
     

  • Campbell, P., Zhang, Y., Yan, F., Lu, Z. & Streets, D. Impacts of transportation sector emissions on future US air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Environ. Pollut. 238, 903–917 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Williams, E., Lerner, B., Murphy, P., Herndon, S. & Zahniser, M. Emissions of NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006. J. Geophys. Res.: Atmos. 114, D21306 (2009).

  • Vutukuru, S. & Dabdub, D. Modeling the effects of ship emissions on coastal air quality: a case study of southern California. Atmos. Environ. 42, 3751–3764 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Dong, J., Zeng, J., Yang, Y. & Wang, H. A review of law and policy on decarbonization of shipping. Front. Mar. Sci. 9, (2022). https://www.frontiersin.org/articles/10.3389/fmars.2022.1076352.

  • Holmes, C., Prather, M. & Vinken, G. The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry. Atmos. Chem. Phys. 14, 6801–6812 (2014).

    Article 

    Google Scholar
     

  • Myhre, G. et al. Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmos. Environ. 45, 387–394 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lauer, A., Eyring, V., Hendricks, J., Jöckel, P. & Lohmann, U. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos. Chem. Phys. 7, 5061–5079 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Marelle, L. et al. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale. Atmos. Chem. Phys. 16, 2359–2379 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Marmer, E. & Langmann, B. Impact of ship emissions on the Mediterranean summertime pollution and climate: a regional model study. Atmos. Environ. 39, 4659–4669 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Partanen, A.-I. et al. Climate and air quality trade-offs in altering ship fuel sulfur content. Atmos. Chem. Phys. 13, 12059–12071 (2013).

    Article 

    Google Scholar
     

  • Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 9, 406 (2018).

    Article 

    Google Scholar
     

  • Gray, N., McDonagh, S., O’Shea, R., Smyth, B. & Murphy, J. D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 1, 100008 (2021).

  • Gettelman, A. et al. Has reducing ship emissions brought forward global warming?. Geophys. Res. Lett. 51, e2024GL109077 (2024).

    Article 

    Google Scholar
     

  • Skeie, R. B., Byrom, R., Hodnebrog, Ø, Jouan, C. & Myhre, G. Multi-model effective radiative forcing of the 2020 sulfur cap for shipping. Atmos. Chem. Phys. 24, 13361–13370 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, T. et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 5, 281 (2024).

    Article 

    Google Scholar
     

  • Yoshioka, M., Grosvenor, D. P., Booth, B. B. B., Morice, C. P. & Carslaw, K. S. Warming effects of reduced sulfur emissions from shipping. EGUsphere 2024, 1–19 (2024).


    Google Scholar
     

  • Quaglia, I. & Visioni, D. Modeling 2020 regulatory changes in international shipping emissions helps explain anomalous 2023 warming. Earth Syst. Dyn. 15, 1527–1541 (2024).

    Article 

    Google Scholar
     

  • Watson-Parris, D. et al. Surface temperature effects of recent reductions in shipping SO2 emissions are within internal variability. Atmos. Chem. Phys. 25, 4443–4454 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Sengupta, A., King, A. D. & Ryan, R. G. Inequity in population exposure to accelerated warming. Geophys. Res. Lett. 51, e2024GL110644 (2024).

    Article 

    Google Scholar
     

  • Jalkanen, J.-P. et al. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 9, 9209–9223 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Jalkanen, J.-P. et al. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 12, 2641–2659 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Johansson, L., Jalkanen, J.-P. & Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 167, 403–415 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grell, G. A. et al. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Grigoriadis, A. et al. Development of exhaust emission factors for vessels: a review and meta-analysis of available data. Atmos. Environ.: X 12, 100142 (2021).

    CAS 

    Google Scholar
     

  • Richards, L. S. et al. The meteorological drivers of mass coral bleaching on the central Great Barrier Reef during the 2022 La Niña. Sci. Rep. 14, 1–17 (2024).

    Article 

    Google Scholar
     

  • McGowan, H. & Theobald, A. Atypical weather patterns cause coral bleaching on the Great Barrier Reef, Australia during the 2021–2022 La Niña. Sci. Rep. 13, 6397 (2023).

    Article 
    CAS 

    Google Scholar
     

  • GBRMPA. Reef Snapshot: Summer 2021–22. Technical Report (Great Barrier Reef Marine Park Authority (GBRMPA), Australian Institute of Marine Science (AIMS), and Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2022).

  • Huang, Z., Feng, M., Dalton, S. J. & Carroll, A. G. Marine heatwaves in the Great Barrier Reef and Coral Sea: their mechanisms and impacts on shallow and mesophotic coral ecosystems. Sci. Total Environ. 908, 168063 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans. Am. Geophys. Union 84, 137–141 (2003).

    Article 

    Google Scholar
     

  • GBRMPA. Annual Summary Report Of The Great Barrier Reef Coral Reef Condition 2022/2023: A Pause in Recent Coral Recovery Across Most of the Great Barrier Reef. Technical Report (Great Barrier Reef Marine Park Authority (GBRMPA), Australian Institute of Marine Science (AIMS), and Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2023).

  • Mölders, N., Porter, S. E., Cahill, C. F. & Grell, G. A. Influence of ship emissions on air quality and input of contaminants in southern Alaska National Parks and Wilderness Areas during the 2006 tourist season. Atmos. Environ. 44, 1400–1413 (2010).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 

    Google Scholar
     

  • Zhao, W., Huang, Y., Siems, S. T., Manton, M. J. & Harrison, D. P. Interactions between trade-wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations. EGUsphere 2023, 1–30 (2023).


    Google Scholar
     

  • Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).

    Article 

    Google Scholar
     

  • Janjić, Z. I. Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci. 57, 3686–3686 (2000).

    Article 

    Google Scholar
     

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos. 102, 16663–16682 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).

    Article 

    Google Scholar
     

  • Morrison, H. & Milbrandt, J. Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Weather Rev. 139, 1103–1130 (2011).

    Article 

    Google Scholar
     

  • Wild, O., Zhu, X. & Prather, M. J. Fast-J: accurate simulation of in-and below-cloud photolysis in tropospheric chemical models. J. Atmos. Chem. 37, 245–282 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Zaveri, R. A. & Peters, L. K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res.: Atmos. 104, 30387–30415 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Zaveri, R. A., Easter, R. C., Fast, J. D. & Peters, L. K. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res.: Atmos. 113, (2008).

  • Chu-Van, T. et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions. Environ. Pollut. 237, 832–841 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lyyränen, J., Jokiniemi, J., Kauppinen, E. I. & Joutsensaari, J. Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. J. Aerosol Sci. 30, 771–784 (1999).

    Article 

    Google Scholar
     

  • Seppälä, S. D. et al. Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea. Atmos. Chem. Phys. 21, 3215–3234 (2021).

    Article 

    Google Scholar
     

  • Xiao, Q. et al. Characteristics of marine shipping emissions at berth: profiles for particulate matter and volatile organic compounds. Atmos. Chem. Phys. 18, 9527–9545 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Singh, C., Singh, S. K., Chauhan, P. & Budakoti, S. Simulation of an extreme dust episode using WRF-Chem based on optimal ensemble approach. Atmos. Res. 249, 105296 (2021).

    Article 

    Google Scholar