Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342 (2016).
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Bindoff, N. et al. Changing ocean, marine ecosystems, and dependent communities. In Portner, H.-O. et al. (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (Cambridge University Press, 2019).
AIMS. Coral Bleaching Events https://www.aims.gov.au/research-topics/environmental-issues/coral-bleaching/coral-bleaching-events (2024).
Masiri, I., Nunez, M. & Weller, E. A 10-year climatology of solar radiation for the Great Barrier Reef: implications for recent mass coral bleaching events. Int. J. Remote Sens. 29, 4443–4462 (2008).
Zhao, W., Huang, Y., Siems, S. & Manton, M. The role of clouds in coral bleaching events over the Great Barrier Reef. Geophys. Res. Lett. 48, e2021GL093936 (2021).
Karnauskas, K. B. Physical diagnosis of the 2016 Great Barrier Reef bleaching event. Geophys. Res. Lett. 47, e2019GL086177 (2020).
Tagliafico, A., Baker, P., Kelaher, B., Ellis, S. & Harrison, D. The effects of shade and light on corals in the context of coral bleaching and shading technologies. Front. Mar. Sci. 9, 919382 (2022).
Butcherine, P. et al. Intermittent shading can moderate coral bleaching on shallow reefs. Front. Mar. Sci. 10, 1162896 (2023).
Ellis, S. L. et al. Shading responses are species-specific in thermally stressed corals. Front. Mar. Sci. 11, 1333806 (2024).
Harrison, D. et al. T14: Environmental Modelling of Large-scale Solar Radiation Management. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. Technical Report (EGUsphere Preprint Repository, 2014).
Condie, S. A. et al. Large-scale interventions may delay decline of the Great Barrier Reef. R. Soc. Open Sci. 8, 201296 (2021).
Tollefson, J. Can artificially altered clouds save the Great Barrier Reef?. Nature 596, 476–478 (2021).
Harrison, D. P. An overview of environmental engineering methods for reducing coral bleaching stress. In Oceanographic Processes Coral Reefs: Physical and Biological Links in the Great Barrier Reef (eds Wolanski, E. & Kingsford, M. J.) 403–418 (Taylor and Francis, CRC Press, 2024).
Capaldo, K., Corbett, J. J., Kasibhatla, P., Fischbeck, P. & Pandis, S. N. Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature 400, 743–746 (1999).
Schreier, M. et al. Impact of ship emissions on the microphysical, optical and radiative properties of marine stratus: a case study. Atmos. Chem. Phys. 6, 4925–4942 (2006).
Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34, 1149–1152 (1977).
Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P. & Stier, P. Invisible ship tracks show large cloud sensitivity to aerosol. Nature 610, 101–106 (2022).
Schreier, M., Mannstein, H., Eyring, V. & Bovensmann, H. Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys. Res. Lett. 34, (2007).
Parliament of Australia. Policy, Regulatory, Taxation, Administrative and Funding Priorities for Australian Shipping (Parliament of Australia, 2020).
Van, T. C. et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions. Environ. Pollut. 237, 1–10 (2017).
Jahangiri, S., Nikolova, N. & Tenekedjiev, K. Health risk assessment of engine exhaust emissions within Australian ports: a case study of Port of Brisbane. Environ. Pract. 21, 20–35 (2019).
Broome, R. A. et al. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ. Int. 87, 85–93 (2016).
Toscano, D., Murena, F., Quaranta, F. & Mocerino, L. Assessment of the impact of ship emissions on air quality based on a complete annual emission inventory using AIS data for the port of Naples. Ocean Eng. 232, 109166 (2021).
Karl, M. et al. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys. 19, 7019–7053 (2019).
Viana, M. et al. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 90, 96–105 (2014).
Liu, Z. et al. Influence of ship emissions on urban air quality: a comprehensive study using highly time-resolved online measurements and numerical simulation in Shanghai. Environ. Sci. Technol. 51, 202–211 (2017).
Zhang, Y. et al. Shipping emissions and their impacts on air quality in China. Sci. Total Environ. 581, 186–198 (2017).
Chen, C., Saikawa, E., Comer, B., Mao, X. & Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) region, China, in 2015, with projections to 2030. GeoHealth 3, 284–306 (2019).
Campbell, P., Zhang, Y., Yan, F., Lu, Z. & Streets, D. Impacts of transportation sector emissions on future US air quality in a changing climate. Part I: Projected emissions, simulation design, and model evaluation. Environ. Pollut. 238, 903–917 (2018).
Williams, E., Lerner, B., Murphy, P., Herndon, S. & Zahniser, M. Emissions of NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006. J. Geophys. Res.: Atmos. 114, D21306 (2009).
Vutukuru, S. & Dabdub, D. Modeling the effects of ship emissions on coastal air quality: a case study of southern California. Atmos. Environ. 42, 3751–3764 (2008).
Dong, J., Zeng, J., Yang, Y. & Wang, H. A review of law and policy on decarbonization of shipping. Front. Mar. Sci. 9, (2022). https://www.frontiersin.org/articles/10.3389/fmars.2022.1076352.
Holmes, C., Prather, M. & Vinken, G. The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry. Atmos. Chem. Phys. 14, 6801–6812 (2014).
Myhre, G. et al. Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmos. Environ. 45, 387–394 (2011).
Lauer, A., Eyring, V., Hendricks, J., Jöckel, P. & Lohmann, U. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos. Chem. Phys. 7, 5061–5079 (2007).
Marelle, L. et al. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale. Atmos. Chem. Phys. 16, 2359–2379 (2016).
Marmer, E. & Langmann, B. Impact of ship emissions on the Mediterranean summertime pollution and climate: a regional model study. Atmos. Environ. 39, 4659–4669 (2005).
Partanen, A.-I. et al. Climate and air quality trade-offs in altering ship fuel sulfur content. Atmos. Chem. Phys. 13, 12059–12071 (2013).
Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 9, 406 (2018).
Gray, N., McDonagh, S., O’Shea, R., Smyth, B. & Murphy, J. D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 1, 100008 (2021).
Gettelman, A. et al. Has reducing ship emissions brought forward global warming?. Geophys. Res. Lett. 51, e2024GL109077 (2024).
Skeie, R. B., Byrom, R., Hodnebrog, Ø, Jouan, C. & Myhre, G. Multi-model effective radiative forcing of the 2020 sulfur cap for shipping. Atmos. Chem. Phys. 24, 13361–13370 (2024).
Yuan, T. et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 5, 281 (2024).
Yoshioka, M., Grosvenor, D. P., Booth, B. B. B., Morice, C. P. & Carslaw, K. S. Warming effects of reduced sulfur emissions from shipping. EGUsphere 2024, 1–19 (2024).
Quaglia, I. & Visioni, D. Modeling 2020 regulatory changes in international shipping emissions helps explain anomalous 2023 warming. Earth Syst. Dyn. 15, 1527–1541 (2024).
Watson-Parris, D. et al. Surface temperature effects of recent reductions in shipping SO2 emissions are within internal variability. Atmos. Chem. Phys. 25, 4443–4454 (2025).
Sengupta, A., King, A. D. & Ryan, R. G. Inequity in population exposure to accelerated warming. Geophys. Res. Lett. 51, e2024GL110644 (2024).
Jalkanen, J.-P. et al. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area. Atmos. Chem. Phys. 9, 9209–9223 (2009).
Jalkanen, J.-P. et al. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 12, 2641–2659 (2012).
Johansson, L., Jalkanen, J.-P. & Kukkonen, J. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmos. Environ. 167, 403–415 (2017).
Grell, G. A. et al. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39, 6957–6975 (2005).
Grigoriadis, A. et al. Development of exhaust emission factors for vessels: a review and meta-analysis of available data. Atmos. Environ.: X 12, 100142 (2021).
Richards, L. S. et al. The meteorological drivers of mass coral bleaching on the central Great Barrier Reef during the 2022 La Niña. Sci. Rep. 14, 1–17 (2024).
McGowan, H. & Theobald, A. Atypical weather patterns cause coral bleaching on the Great Barrier Reef, Australia during the 2021–2022 La Niña. Sci. Rep. 13, 6397 (2023).
GBRMPA. Reef Snapshot: Summer 2021–22. Technical Report (Great Barrier Reef Marine Park Authority (GBRMPA), Australian Institute of Marine Science (AIMS), and Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2022).
Huang, Z., Feng, M., Dalton, S. J. & Carroll, A. G. Marine heatwaves in the Great Barrier Reef and Coral Sea: their mechanisms and impacts on shallow and mesophotic coral ecosystems. Sci. Total Environ. 908, 168063 (2024).
Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans. Am. Geophys. Union 84, 137–141 (2003).
GBRMPA. Annual Summary Report Of The Great Barrier Reef Coral Reef Condition 2022/2023: A Pause in Recent Coral Recovery Across Most of the Great Barrier Reef. Technical Report (Great Barrier Reef Marine Park Authority (GBRMPA), Australian Institute of Marine Science (AIMS), and Commonwealth Scientific and Industrial Research Organisation (CSIRO), 2023).
Mölders, N., Porter, S. E., Cahill, C. F. & Grell, G. A. Influence of ship emissions on air quality and input of contaminants in southern Alaska National Parks and Wilderness Areas during the 2006 tourist season. Atmos. Environ. 44, 1400–1413 (2010).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Zhao, W., Huang, Y., Siems, S. T., Manton, M. J. & Harrison, D. P. Interactions between trade-wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations. EGUsphere 2023, 1–30 (2023).
Hong, S.-Y., Noh, Y. & Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341 (2006).
Janjić, Z. I. Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci. 57, 3686–3686 (2000).
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.: Atmos. 102, 16663–16682 (1997).
Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).
Morrison, H. & Milbrandt, J. Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Weather Rev. 139, 1103–1130 (2011).
Wild, O., Zhu, X. & Prather, M. J. Fast-J: accurate simulation of in-and below-cloud photolysis in tropospheric chemical models. J. Atmos. Chem. 37, 245–282 (2000).
Zaveri, R. A. & Peters, L. K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res.: Atmos. 104, 30387–30415 (1999).
Zaveri, R. A., Easter, R. C., Fast, J. D. & Peters, L. K. Model for simulating aerosol interactions and chemistry (MOSAIC). J. Geophys. Res.: Atmos. 113, (2008).
Chu-Van, T. et al. On-board measurements of particle and gaseous emissions from a large cargo vessel at different operating conditions. Environ. Pollut. 237, 832–841 (2018).
Lyyränen, J., Jokiniemi, J., Kauppinen, E. I. & Joutsensaari, J. Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. J. Aerosol Sci. 30, 771–784 (1999).
Seppälä, S. D. et al. Effects of marine fuel sulfur restrictions on particle number concentrations and size distributions in ship plumes in the Baltic Sea. Atmos. Chem. Phys. 21, 3215–3234 (2021).
Xiao, Q. et al. Characteristics of marine shipping emissions at berth: profiles for particulate matter and volatile organic compounds. Atmos. Chem. Phys. 18, 9527–9545 (2018).
Singh, C., Singh, S. K., Chauhan, P. & Budakoti, S. Simulation of an extreme dust episode using WRF-Chem based on optimal ensemble approach. Atmos. Res. 249, 105296 (2021).