• Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Genco, A. et al. Femtosecond switching of strong light-matter interactions in microcavities with two-dimensional semiconductors. Nat. Commun. 16, 6490 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasa, P. & Lienau, C. Strong light–matter interaction in quantum emitter/metal hybrid nanostructures. ACS Photon. 5, 2–23 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gross, H., Hamm, J. M., Tufarelli, T., Hess, O. & Hecht, B. Near-field strong coupling of single quantum dots. Sci. Adv. 4, eaar4906 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aberra Guebrou, S. et al. Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. Phys. Rev. Lett. 108, 066401 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Chevrier, K. et al. Organic exciton in strong coupling with long-range surface plasmons and waveguided modes. ACS Photon. 5, 80–84 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Timmer, D. et al. Plasmon mediated coherent population oscillations in molecular aggregates. Nat. Commun. 14, 8035 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greten, L. et al. Strong coupling of two-dimensional excitons and plasmonic photonic crystals: microscopic theory reveals triplet spectra. ACS Photon. 11, 1396–1411 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Abajo, F. J. G. et al. Roadmap for photonics with 2D materials. ACS Photon. https://doi.org/10.1021/acsphotonics.5c00353 (2025).

  • Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsch, F., Selig, M. & Knorr, A. Exciton-scattering-induced dephasing in two-dimensional semiconductors. Phys. Rev. Lett. 124, 257402 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trovatello, C. et al. Disentangling many-body effects in the coherent optical response of 2D semiconductors. Nano Lett. 22, 5322–5329 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mapara, V. et al. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett. 22, 1680–1687 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, Y. X. et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light Sci. Appl. 11, 94 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, W. et al. Ultrafast modulation of exciton–plasmon coupling in a monolayer WS2–Ag nanodisk hybrid system. ACS Photon. 6, 2832–2840 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Ultrafast investigation of the strong coupling system between square Ag nanohole array and monolayer WS2. Nano Lett. 25, 3391–3397 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, K. et al. Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities. Nat. Commun. 14, 5310 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmer, D. et al. Ultrafast coherent exciton couplings and many-body interactions in monolayer WS2. Nano Lett. 24, 8117–8125 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peruffo, N., Mancin, F. & Collini, E. Coherent dynamics in solutions of colloidal plexcitonic nanohybrids at room temperature. Adv. Opt. Mater. 11, 2203010 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vasa, P. et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates. Nat. Photon. 7, 128–132 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Policht, V. R., Proscia, N. V. & Cunningham, P. D. Insight into exciton polaritons of two-dimensional transition metal dichalcogenides with time-resolved spectroscopy. MRS Commun. 15, 1–20 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Toffoletti, F. & Collini, E. Coherent phenomena in exciton–polariton systems. J. Phys. Mater. 8, 022002 (2025).

    Article 

    Google Scholar
     

  • Takemura, N. et al. Dephasing effects on coherent exciton-polaritons and the breakdown of the strong coupling regime. Phys. Rev. B 92, 235305 (2015).

    Article 

    Google Scholar
     

  • Fresch, E. et al. Two-dimensional electronic spectroscopy. Nat. Rev. Methods Prim. 3, 84 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Lomsadze, B., Moody, G., Smallwood, C. & Cundiff, S. Optical Multidimensional Coherent Spectroscopy (Oxford Univ. Press, 2023).

  • Mewes, L., Wang, M., Ingle, R. A., Börjesson, K. & Chergui, M. Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy. Commun. Phys. 3, 157 (2020).

    Article 

    Google Scholar
     

  • Son, M. et al. Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy. Nat. Commun. 13, 7305 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, M. et al. Direct evidence of ultrafast energy delocalization between optically hybridized J-aggregates in a strongly coupled microcavity. Adv. Opt. Mater. 12, 2400821 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Finkelstein-Shapiro, D. et al. Understanding radiative transitions and relaxation pathways in plexcitons. Chem. 7, 1092–1107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, D. H. et al. Hybridized exciton-photon-phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett. 128, 087401 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhamija, S. & Son, M. Mapping the dynamics of energy relaxation in exciton–polaritons using ultrafast two-dimensional electronic spectroscopy. Chem. Phys. Rev. 5, 041309 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Shen, K., Sun, K., Gelin, M. F. & Zhao, Y. 2D electronic spectroscopy uncovers 2D materials: theoretical study of nanocavity-integrated monolayer semiconductors. J. Phys. Chem. Lett. 16, 3264–3273 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mondal, M. E., Vamivakas, A. N., Cundiff, S. T., Krauss, T. D. & Huo, P. Polariton spectra under the collective coupling regime. II. 2D non-linear spectra. J. Chem. Phys. 162, 074110 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallego-Valencia, D., Mewes, L., Feist, J. & Sanz-Vicario, J. L. Coherent multidimensional spectroscopy in polariton systems. Phys. Rev. A 109, 063704 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mondal, M. E. et al. Quantum dynamics simulations of the 2D spectroscopy for exciton polaritons. J. Chem. Phys. 159, 094102 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Finkelstein-Shapiro, D., Mante, P.-A., Balci, S., Zigmantas, D. & Pullerits, T. Non-Hermitian Hamiltonians for linear and nonlinear optical response: a model for plexcitons. J. Chem. Phys. 158, 104104 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C., Bai, S. & Shi, Q. A theoretical model for linear and nonlinear spectroscopy of plexcitons. J. Chem. Theory Comput. 21, 3612–3624 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quenzel, T. et al. Plasmon-enhanced exciton delocalization in squaraine-type molecular aggregates. ACS Nano 16, 4693–4704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, P., De, B., Tripathi, R. & Singh, R. Exciton-exciton interaction: a quantitative comparison between complimentary phenomenological models. Phys. Rev. B 109, 155423 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Conway, M. et al. Direct measurement of biexcitons in monolayer WS2. 2D Mater. 9, 021001 (2022).

    Article 

    Google Scholar
     

  • Katsch, F., Selig, M. & Knorr, A. Theory of coherent pump–probe spectroscopy in monolayer transition metal dichalcogenides. 2D Mater. 7, 015021 (2019).

    Article 

    Google Scholar
     

  • Purz, T. L. et al. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys. 156, 214704 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greten, L., Salzwedel, R., Schutsch, D. & Knorr, A. Microscopic theory for a minimal oscillator model of exciton-plasmon coupling in hybrids of two-dimensional semiconductors and metal nanoparticles. Phys. Rev. B 111, 205438 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • del Pino, J., Feist, J. & Garcia-Vidal, F. J. Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode. New J. Phys. 17, 053040 (2015).

    Article 

    Google Scholar
     

  • Chng, B. X. K. et al. Mechanism of molecular polariton decoherence in the collective light–matter couplings regime. J. Phys. Chem. Lett. 15, 11773–11783 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DelPo, C. A. et al. Polariton transitions in femtosecond transient absorption studies of ultrastrong light-molecule coupling. J. Phys. Chem. Lett. 11, 2667–2674 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Autry, T. M. et al. Excitation ladder of cavity polaritons. Phys. Rev. Lett. 125, 067403 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Büttner, S. et al. Probing plexciton dynamics with higher-order spectroscopy. J. Chem. Phys. 163, 044702 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Vasa, P. et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4, 7559–7565 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garraway, B. M. The Dicke model in quantum optics: Dicke model revisited. Phil. Trans. R. Soc. A 369, 1137–1155 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bange, J. P. et al. Ultrafast dynamics of bright and dark excitons in monolayer WSe2 and heterobilayer WSe2/MoS2. 2D Mater. 10, 035039 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Ultrafast electronic relaxation dynamics of atomically thin MoS2 is accelerated by wrinkling. ACS Nano 17, 16682–16694 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadore, A. et al. Monolayer WS2 electro- and photo-luminescence enhancement by TFSI treatment. 2D Mater. 11, 025017 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Grupp, A. et al. Broadly tunable ultrafast pump-probe system operating at multi-kHz repetition rate. J. Opt. 20, 014005 (2017).

    Article 

    Google Scholar
     

  • Brida, D., Manzoni, C. & Cerullo, G. Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line. Opt. Lett. 37, 3027–3029 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Timmer, D., Lünemann, D. C., De Sio, A., Cerullo, G. & Lienau, C. Disentangling signal contributions in two-dimensional electronic spectroscopy in the pump–probe geometry. J. Chem. Phys. 162, 12 (2025).

    Article 

    Google Scholar
     

  • Palmieri, B., Abramavicius, D. & Mukamel, S. Lindblad equations for strongly coupled populations and coherences in photosynthetic complexes. J. Chem. Phys. 130, 204512 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  • Timmer, D. et al. Dataset for ‘Ultrafast transition from coherent to incoherent polariton nonlinearities in a hybrid 1L-WS2/plasmon structure’. Zenodo https://doi.org/10.5281/zenodo.17200209 (2025).