• Flebus, B. et al. The 2024 magnonics roadmap. J. Phys. Condens. Matter 36, 363501 (2024).

    Article 

    Google Scholar
     

  • Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mahmoud, A. et al. Introduction to spin wave computing. J. Appl. Phys. 128, 161101 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

    Article 

    Google Scholar
     

  • Körber, L. et al. Pattern recognition in reciprocal space with a magnon-scattering reservoir. Nat. Commun. 14, 3954 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139–1144 (2024).

    Article 

    Google Scholar
     

  • Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).

    Article 

    Google Scholar
     

  • Girardi, D. et al. Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet. Nat. Commun. 15, 3057 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wintz, S. et al. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 11, 948–953 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Yu, H. et al. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Reconfigurable nonreciprocal excitation of propagating exchange spin waves in perpendicularly magnetized yttrium iron garnet thin films. Phys. Rev. B 108, 134403 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C. et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 9, 738 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Talapatra, A. et al. Imaging of short-wavelength spin waves in a nanometer-thick YIG/Co bilayer. Appl. Phys. Lett. 122, 202404 (2023).

  • Wang, Q. et al. Deeply nonlinear excitation of self-normalized short spin waves. Sci. Adv. 9, eadg4609 (2023).

    Article 

    Google Scholar
     

  • Nikolaev, K., Mohapatra, B. D., Schmidt, G., Demokritov, S. & Demidov, V. Spatially extended nonlinear generation of short-wavelength spin waves in yttrium iron garnet nanowaveguides. Phys. Rev. Appl. 22, 044083 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ginzburg, V. L. Radiation by uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena). Phys. Usp. 39, 973–982 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Čerenkov, P. A. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Datta, T. Cherenkov magnon excitations by a sub-relativistic magnetic monopole. Phys. Lett. A 103, 243–246 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Vorob’ev, P. V. & Kolokolov, I. V. Cherenkov emission of magnons by a slow monopole. JETP Lett. 67, 910 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Kaminer, I. et al. Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Pogue, B. W. et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat. Biomed. Eng. 2, 254–264 (2018).

    Article 

    Google Scholar
     

  • Yan, M., Kákay, A., Andreas, C. & Hertel, R. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B 88, 220412 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Khokhlov, N., Filatov, I. & Kalashnikova, A. Spatial asymmetry of optically excited spin waves in anisotropic ferromagnetic film. J. Magn. Magn. Mater. 589, 171514 (2024).

    Article 

    Google Scholar
     

  • Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662–666 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dobrovolskiy, O. V. et al. Moving Abrikosov vortex lattices generate sub-40-nm magnons. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-02024-w (2025).

  • Yan, M. et al. Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99, 122505 (2011).

  • Hertel, R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J. Phys. Condens. Matter 28, 483002 (2016).

    Article 

    Google Scholar
     

  • Kimel, A. V., Kalashnikova, A. M., Pogrebna, A. & Zvezdin, A. K. Fundamentals and perspectives of ultrafast photoferroic recording. Phys. Rep. 852, 1–46 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Matsuda, O., Larciprete, M. C., Voti, R. L. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).

    Article 

    Google Scholar
     

  • Hioki, T., Hashimoto, Y. & Saitoh, E. Coherent oscillation between phonons and magnons. Commun. Phys. 5, 115 (2022).

    Article 

    Google Scholar
     

  • Kitaeva, V. F., Zharikov, E. V. & Chistyi, I. L. The properties of crystals with garnet structure. Phys. Status Solidi A 92, 475–488 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Scherbakov, A. V. et al. Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Deb, M. et al. Femtosecond laser-excitation-driven high frequency standing spin waves in nanoscale dielectric thin films of iron garnets. Phys. Rev. Lett. 123, 027202 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shelukhin, L. A. et al. Ultrafast laser-induced changes of the magnetic anisotropy in a low-symmetry iron garnet film. Phys. Rev. B 97, 014422 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC Press, 1996).


    Google Scholar
     

  • Kats, V. N. et al. Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films. Phys. Rev. B 93, 214422 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wojtowicz, P. J. High temperature susceptibility of garnets: exchange interactions in YIG and LuIG. J. Appl. Phys. 33, 1257–1258 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Zeuschner, S. P. et al. Standing spin wave excitation in Bi:YIG films via temperature-induced anisotropy changes and magneto-elastic coupling. Phys. Rev. B 106, 134401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Azovtsev, A. V. & Pertsev, N. A. Antiferromagnetic standing spin waves generated in NiO thin films by short strain pulses. Phys. Rev. B 110, 144430 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Akyol, M. et al. Structural, magnetic and optical properties of Au/YIG, YIG/Au and Au/YIG/Au multilayer thin film stacks. J. Magn. Magn. Mater. 493, 165704 (2020).

    Article 

    Google Scholar
     

  • Dongquoc, V. et al. Extraordinary enhancement of magneto-optical Faraday rotation angle in Bi-YIG/Pt/glass prepared by metal organic decomposition method. Surf. Interfaces 51, 104652 (2024).

    Article 

    Google Scholar
     

  • Gerevenkov, P. I. et al. Three regimes of a picosecond magnetoacoustics in ferromagnetic structures. Preprint at https://arxiv.org/abs/2505.09579 (2025).

  • Zeuschner, S. P. et al. Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction. Struct. Dyn. 6, 024302 (2019).

  • Yaremkevich, D. D. et al. On-chip phonon-magnon reservoir for neuromorphic computing. Nat. Commun. 14, 8296 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Matsumoto, K. et al. Observation of evanescent spin waves in the magnetic dipole regime. Phys. Rev. B 101, 184407 (2020).

  • Philippe, G., Moalic, M. & Kłos, J. W. Unidirectional spin wave emission by traveling pair of magnetic field profiles. J. Magn. Magn. Mater. 587, 171359 (2023).

    Article 

    Google Scholar
     

  • Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liao, L., Liu, J., Puebla, J., Shao, Q. & Otani, Y. Hybrid magnon-phonon crystals. npj Spintron. 2, 47 (2024).

    Article 

    Google Scholar
     

  • Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

    Article 
    ADS 

    Google Scholar
     

  • van Capel, P., Péronne, E. & Dijkhuis, J. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 56, 36–51 (2015).

    Article 

    Google Scholar
     

  • Zhuang, S., Meisenheimer, P. B., Heron, J. & Hu, J.-M. A narrowband spintronic terahertz emitter based on magnetoelastic heterostructures. ACS Appl. Mater. Interfaces 13, 48997–49006 (2021).

    Article 

    Google Scholar
     

  • Doormann, V., Krumme, J. P., Klages, C. P. & Erman, M. Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths. Appl. Phys. A 34, 223–230 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

    Article 

    Google Scholar
     

  • Clark, A. E., DeSavage, B., Coleman, W., Callen, E. R. & Callen, H. B. Saturation magnetostriction of single-crystal YIG. J. Appl. Phys. 34, 1296–1297 (1963).

    Article 
    ADS 

    Google Scholar
     

  • Kamra, A., Keshtgar, H., Yan, P. & Bauer, G. E. W. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Azovtsev, A. V. & Pertsev, N. A. Magnetization dynamics and spin pumping induced by standing elastic waves. Phys. Rev. B 94, 184401 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ruello, P. & Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015).

    Article 

    Google Scholar
     

  • Filatov, I. A. et al. Magnon-Cherenkov effect from a picosecond strain pulse. figshare https://doi.org/10.6084/m9.figshare.28351496 (2025).