• Magro, D. O., Sassaki, L. Y. & Chebli, J. M. F. Interaction between diet and genetics in patients with inflammatory bowel disease. World J. Gastroenterol. 30, 1644–1650 (2024).


    Google Scholar
     

  • Deehan, E. C. & Walter, J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends Endocrinol. Metab. 27, 239–242 (2016).


    Google Scholar
     

  • Macia, L. et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734 (2015).


    Google Scholar
     

  • Tan, J. K., Macia, L. & Mackay, C. R. Dietary fiber and SCFAs in the regulation of mucosal immunity. J. Allergy Clin. Immunol. 151, 361–370 (2023).


    Google Scholar
     

  • Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 e1321 (2016).


    Google Scholar
     

  • Shen, S. et al. Deficiency of dietary fiber modulates gut microbiota composition, neutrophil recruitment and worsens experimental colitis. Front Immunol. 12, 619366 (2021).


    Google Scholar
     

  • David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).


    Google Scholar
     

  • Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).


    Google Scholar
     

  • Diaz-Garrido, N., Badia, J. & Baldoma, L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J. Extracell. Vesicles 10, e12161 (2021).


    Google Scholar
     

  • van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349 (2001).


    Google Scholar
     

  • Jiang, L. et al. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance. Nat. Commun. 7, 13045 (2016).


    Google Scholar
     

  • Leoni, G. et al. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Invest 125, 1215–1227 (2015).


    Google Scholar
     

  • Vishnoi, A. & Rani, S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol. Biol. 2595, 1–12 (2023).


    Google Scholar
     

  • Wu, Z. et al. Propionic acid driven by the lactobacillus johnsonii culture supernatant alleviates colitis by inhibiting M1 macrophage polarization by modulating the MAPK pathway in mice. J. Agric Food Chem. 71, 14951–14966 (2023).


    Google Scholar
     

  • Liu, B. et al. Critical contributions of protein cargos to the functions of macrophage-derived extracellular vesicles. J. Nanobiotechnol. 21, 352 (2023).


    Google Scholar
     

  • Xu, Y. et al. Crohn’s disease-associated AIEC inhibiting intestinal epithelial cell-derived exosomal let-7b expression regulates macrophage polarization to exacerbate intestinal fibrosis. Gut Microbes 15, 2193115 (2023).


    Google Scholar
     

  • Malmuthuge, N. & Guan, L. L. Noncoding RNAs: Regulatory molecules of host-microbiome crosstalk. Trends Microbiol 29, 713–724 (2021).


    Google Scholar
     

  • Fardi, F. et al. An interplay between non-coding RNAs and gut microbiota in human health. Diab Res Clin. Pr. 201, 110739 (2023).


    Google Scholar
     

  • Shi, H. et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9, 223 (2021).


    Google Scholar
     

  • Gomez-Arango, L. F. et al. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018).


    Google Scholar
     

  • Wang, Z. et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 9, 227 (2021).


    Google Scholar
     

  • Zhang, Y., Song, M., Fan, J., Guo, X. & Tao, S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J. Anim. Sci. Biotechnol. 15, 149 (2024).


    Google Scholar
     

  • Kim, J. H., Lee, J., Park, J. & Gho, Y. S. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev. Biol. 40, 97–104 (2015).


    Google Scholar
     

  • Dean, S. N., Leary, D. H., Sullivan, C. J., Oh, E. & Walper, S. A. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci. Rep. 9, 877 (2019).


    Google Scholar
     

  • Tong, L. et al. Milk-derived extracellular vesicles protect intestinal barrier integrity in the gut-liver axis. Sci. Adv. 9, eade5041 (2023).


    Google Scholar
     

  • Reif, S. et al. Cow and human milk-derived exosomes ameliorate colitis in DSS murine model. Nutrients 12, 2589 (2020).

  • Jing, R. et al. Milk-derived extracellular vesicles functionalized with anti-tumour necrosis factor-alpha nanobody and anti-microbial peptide alleviate ulcerative colitis in mice. J. Extracell. Vesicles 13, e12462 (2024).


    Google Scholar
     

  • Sun, T. et al. Comprehensive analysis of dysregulated circular RNAs and construction of a ceRNA network involved in the pathology of Alzheimer’s disease in a 5 x FAD mouse model. Front Aging Neurosci. 14, 1020699 (2022).


    Google Scholar
     

  • Ma X. et al. Akkermansia muciniphila identified as key strain to alleviate gut barrier injury through Wnt signaling pathway. Elife 12, RP92906 (2025).

  • Wade, H. et al. Akkermansia muciniphila and its membrane protein ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J. Biomed. Sci. 30, 38 (2023).


    Google Scholar
     

  • Song, S. et al. Clostridium butyricum and its metabolites regulate macrophage polarization through miR-146a to antagonize gouty arthritis. J. Adv. Res. S2090-1232, 00354-6 (2025).

  • Goldie, B. J. et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res. 42, 9195–9208 (2014).


    Google Scholar
     

  • Ma, L. et al. Anti-inflammatory effect of clostridium butyricum-derived extracellular vesicles in ulcerative colitis: Impact on host microRNAs expressions and gut microbiome profiles. Mol. Nutr. Food Res. 67, e2200884 (2023).


    Google Scholar
     

  • Westermann, S. et al. Th2-dependent STAT6-regulated genes in intestinal epithelial cells mediate larval trapping during secondary Heligmosomoides polygyrus bakeri infection. PLoS Pathog. 19, e1011296 (2023).


    Google Scholar
     

  • Deng, C. et al. Exosome circATP8A1 induces macrophage M2 polarization by regulating the miR-1-3p/STAT6 axis to promote gastric cancer progression. Mol. Cancer 23, 49 (2024).


    Google Scholar
     

  • Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).


    Google Scholar
     

  • Wang, L. X., Zhang, S. X., Wu, H. J., Rong, X. L. & Guo, J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345–358 (2019).


    Google Scholar
     

  • Song, M. et al. Diarrheal microbiota-derived extracellular vesicles drive intestinal homeostasis dysfunction via miR-125b/NF-kappaB-mediated macrophage polarization. Gut Microbes 17, 2541036 (2025).


    Google Scholar
     

  • Tao, S. et al. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J. Adv. Res. 69, 545–563 (2025).


    Google Scholar
     

  • Li, J. et al. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 9, 33 (2023).


    Google Scholar
     

  • Tao, S. et al. Lactobacillus johnsonii-derived extracellular vesicles carrying GAPDH protect against ulcerative colitis through modulating macrophage polarization. J. Adv. Res. S2090-1232, 00444–8 (2025).

  • Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).


    Google Scholar
     

  • Honda, M., Kadohisa, M., Yoshii, D., Komohara, Y. & Hibi, T. Directly recruited GATA6 + peritoneal cavity macrophages contribute to the repair of intestinal serosal injury. Nat. Commun. 12, 7294 (2021).


    Google Scholar
     

  • Wijayatunga, N. N. et al. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice. Oncotarget 9, 9246–9261 (2018).


    Google Scholar
     

  • Xiong, L. et al. Acute exposure to high-fat diet impairs ILC3 functions and gut homeostasis. Immunity 58, 1185–1200 e1188 (2025).


    Google Scholar
     

  • Chaves-Perez, A. et al. Metabolic adaptations direct cell fate during tissue regeneration. Nature 643, 468–477 (2025).


    Google Scholar
     

  • Pi, Y. et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome 11, 19 (2023).


    Google Scholar
     

  • Shen, Q. et al. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes 14, 2128604 (2022).


    Google Scholar
     

  • Tao, S., Bai, Y., Li, T., Li, N. & Wang, J. Original low birth weight deteriorates the hindgut epithelial barrier function in pigs at the growing stage. FASEB J. 33, 9897–9912 (2019).


    Google Scholar
     

  • Wu, X. et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G295–G306 (2008).


    Google Scholar