• Lanza, M. et al. The growing memristor industry. Nature 640, 613–622 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).

    Article 

    Google Scholar
     

  • Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article 

    Google Scholar
     

  • Raoux, S. et al. Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52, 465–479 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnaud, F. et al. High density embedded PCM cell in 28 nm FDSOI technology for automotive micro-controller applications. In Proc. IEEE International Electron Devices Meeting 24.2.1–24.2.4 (IEEE, 2020).

  • Dyre, J. C. Colloquium: the glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953–972 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ballmaier, J., Walfort, S. & Salinga, M. Resistance drift of phase change materials beyond the power law. Adv. Electron. Mater. 11, 2400905 (2025).

  • Viollet, V. et al. Temperature and drift-aware high-level PCM-based array model for reliable hardware IMC design. In Proc. IEEE International Reliability Physics Symposium 1–4 (IEEE, 2025).

  • Nandakumar, S. R. et al. Precision of synaptic weights programmed in phase-change memory devices for deep learning inference. In Proc. IEEE International Electron Devices Meeting 29.4.1–29.4.4 (IEEE, 2020).

  • Rasch, M. J. et al. Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavagna, A. Fragile vs. strong liquids: a saddles-ruled scenario. Europhys. Lett. 53, 490 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, P. K. & Kob, W. Basis glass states: new insights from the potential energy landscape. J. Non-Cryst. Solids: X 3, 100031 (2019).

    CAS 

    Google Scholar
     

  • Mocanu, F. C. et al. Microscopic observation of two-level systems in a metallic glass model. J. Chem. Phys. 158, 014501 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stillinger, F. H. & Weber, T. A. Hidden structure in liquids. Phys. Rev. A 25, 978–989 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Schrøder, T. B., Sastry, S., Dyre, J. C. & Glotzer, S. C. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid. J. Chem. Phys. 112, 9834–9840 (2000).

    Article 

    Google Scholar
     

  • Doliwa, B. & Heuer, A. Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid. Phys. Rev. E 67, 031506 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Weissman, M. B. Low-frequency noise as a tool to study disordered materials. Annu. Rev. Mater. Res. 26, 395–429 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Zipoli, F., Krebs, D. & Curioni, A. Structural origin of resistance drift in amorphous GeTe. Phys. Rev. B 93, 115201 (2016).

    Article 

    Google Scholar
     

  • Le Gallo, M., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Collective structural relaxation in phase-change memory devices. Adv. Electron. Mater. 4, 1700627 (2018).

    Article 

    Google Scholar
     

  • Fantini, P. et al. Characterization and modelling of low-frequency noise in PCM devices. In Proc. IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  • Nardone, M., Kozub, V. I., Karpov, I. V. & Karpov, V. G. Possible mechanisms for 1/f noise in chalcogenide glasses: a theoretical description. Phys. Rev. B 79, 165206 (2009).

    Article 

    Google Scholar
     

  • Ralls, K. S. & Buhrman, R. A. Microscopic study of 1/f noise in metal nanobridges. Phys. Rev. B 44, 5800–5817 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Parman, C. E., Israeloff, N. E. & Kakalios, J. Random telegraph-switching noise in coplanar current measurements of amorphous silicon. Phys. Rev. B 44, 8391–8394 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: \(\frac{1}{f}\) noise. Rev. Mod. Phys. 53, 497–516 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Weissman, M. B. \(\frac{1}{f}\) noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Yu, C. C. Why study noise due to two level systems: a suggestion for experimentalists. J. Low Temp. Phys. 137, 251–265 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Fugazza, D., Ielmini, D., Lavizzari, S. & Lacaita, A. L. Random telegraph signal noise in phase change memory devices. In Proc. IEEE International Reliability Physics Symposium 743–749 (IEEE, 2010).

  • Cobelli, M., Dragoni, D., Caravati, S. & Bernasconi, M. Metal-semiconductor transition in the supercooled liquid phase of the Ge2Sb2Te5 and GeTe compounds. Phys. Rev. Mater. 5, 045004 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Holle, N., Walfort, S., Mazzarello, R. & Salinga, M. Effect of Peierls-like distortions on transport in amorphous phase change devices. Commun. Mater. 6, 56 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zucchini, W., MacDonald, I. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn (Chapman & Hall/CRC, 2016).

  • Schreiber, J. pomegranate: fast and flexible probabilistic modeling in Python. J. Mach. Learn. Res. 18, 1–6 (2018).


    Google Scholar
     

  • Sosso, G. C., Colombo, J., Behler, J., Del Gado, E. & Bernasconi, M. Dynamical heterogeneity in the supercooled liquid state of the phase change material GeTe. J. Phys. Chem. B 118, 13621–13628 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Caravati, S., Bernasconi, M., Kühne, T. D., Krack, M. & Parrinello, M. First-principles study of crystalline and amorphous Ge2Sb2Te5 and the effects of stoichiometric defects. J. Phys.: Condens. Matter 21, 255501 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Konstantinou, K., Mocanu, F. C., Lee, T.-H. & Elliott, S. R. Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5. Nat. Commun. 10, 3065 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantinou, K., Elliott, S. R. & Akola, J. Inherent electron and hole trapping in amorphous phase-change memory materials: Ge2Sb2Te5. J. Mater. Chem. C 10, 6744–6753 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    Article 
    CAS 

    Google Scholar
     

  • Sosso, G. C., Donadio, D., Caravati, S., Behler, J. & Bernasconi, M. Thermal transport in phase-change materials from atomistic simulations. Phys. Rev. B 86, 104301 (2012).

    Article 

    Google Scholar
     

  • Middleton, T. F. & Wales, D. J. Energy landscapes of some model glass formers. Phys. Rev. B 64, 024205 (2001).

    Article 

    Google Scholar
     

  • Pollak, E., Grabert, H. & Hänggi, P. Theory of activated rate processes for arbitrary frequency dependent friction: solution of the turnover problem. J. Chem. Phys.91, 4073–4087 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Payvand, M. et al. Self-organization of an inhomogeneous memristive hardware for sequence learning. Nat. Commun. 13, 5793 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, F. et al. Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks. Nat. Electron. 3, 409–418 (2020).

    Article 

    Google Scholar
     

  • Dalgaty, T., Vianello, E. & Querlioz, D. Memristors for Bayesian in-memory computing. Nat. Mater. https://doi.org/10.1038/s41563-025-02409-1 (2025).