• Ran, J. et al. Global, regional, and national burden of heart failure and its underlying causes, 1990–2021: results from the global burden of disease study 2021. Biomark. Res. 13, 16 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kindi, S. G., Brook, R. D., Biswal, S. & Rajagopalan, S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat. Rev. Cardiol. 17, 656–672 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, N., Gim, J. & Choi, J. Epigenetic profiling to environmental stressors in model and non-model organisms: ecotoxicology perspective. Environ. Health Toxicol. 33, e2018015 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hala, D., Huggett, D. & Burggren, W. Environmental stressors and the epigenome. Drug Discov. Today Technol. 12, e3–e8 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perera, F. & Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 31, 363–373 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daiber, A. et al. The “exposome” concept — how environmental risk factors influence cardiovascular health. Acta Biochim. Pol. 66, 269–283 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Münzel, T., Sørensen, M., Hahad, O., Nieuwenhuijsen, M. & Daiber, A. The contribution of the exposome to the burden of cardiovascular disease. Nat. Rev. Cardiol. 20, 651–669 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Khraishah, H., Chen, Z. & Rajagopalan, S. Understanding the cardiovascular and metabolic health effects of air pollution in the context of cumulative exposomic impacts. Circ. Res. 134, 1083–1097 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajagopalan, S., Al-Kindi, S. G. & Brook, R. D. Air pollution and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 72, 2054–2070 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khraishah, H. et al. Climate change and cardiovascular disease: implications for global health. Nat. Rev. Cardiol. 19, 798–812 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Münzel, T. et al. Environmental noise and the cardiovascular system. J. Am. Coll. Cardiol. 71, 688–697 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zielinska-Dabkowska, K. M., Schernhammer, E. S., Hanifin, J. P. & Brainard, G. C. Reducing nighttime light exposure in the urban environment to benefit human health and society. Science 380, 1130–1135 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Morata, I. et al. Associations between urinary metal levels and incident heart failure: a multi-cohort analysis. JACC Heart Fail. 13, 102510 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamas, G. A. et al. Contaminant metals as cardiovascular risk factors: a scientific statement from the American Heart Association. J. Am. Heart Assoc. 12, e029852 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahad, O., Al-Kindi, S., Lelieveld, J., Münzel, T. & Daiber, A. Supporting and implementing the beneficial parts of the exposome: the environment can be the problem, but it can also be the solution. Int. J. Hyg. Environ. Health 255, 114290 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K., Brook, R. D., Li, Y., Rajagopalan, S. & Kim, J. B. Air pollution, built environment, and early cardiovascular disease. Circ. Res. 132, 1707–1724 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajagopalan, S. et al. The urban environment and cardiometabolic health. Circulation 149, 1298–1314 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, L.-D., Tang, N. L. S., Xu, Z. F. & Xu, J. Genes regulate blood pressure, but “environments” cause hypertension. Front. Genet. 11, 580443 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Øvretveit, K. et al. Polygenic interactions with environmental exposures in blood pressure regulation: the HUNT study. J. Am. Heart Assoc. 13, e034612 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keaton, J. M. et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 56, 778–791 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pazoki, R. et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation 137, 653–661 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baccarelli, A., Dolinoy, D. C. & Walker, C. L. A precision environmental health approach to prevention of human disease. Nat. Commun. 14, 2449 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanwar, V. et al. PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice. Environ. Pollut. 230, 116–124 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanwar, V. et al. In utero particulate matter exposure produces heart failure, electrical remodeling, and epigenetic changes at adulthood. J. Am. Heart Assoc. 6, e005796 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, F. K. et al. A proteomics-based approach for prediction of different cardiovascular diseases and dementia. Circulation 151, 277–287 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Government of Canada. Human Health Risk Assessment for Ambient Nitrogen Dioxide https://www.canada.ca/en/health-canada/services/publications/healthy-living/human-health-risk-assessment-ambient-nitrogen-dioxide.html (2016).

  • Public Health England. Associations of Long-term Average Concentrations of Nitrogen Dioxide with Mortality (2018): COMEAP Summary https://www.gov.uk/government/publications/nitrogen-dioxide-effects-on-mortality/associations-of-long-term-average-concentrations-of-nitrogen-dioxide-with-mortality-2018-comeap-summary (2018).

  • United States Environmental Protection Agency. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Final Report, Jan 2016) https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=310879 (2016).

  • Thurston, G. D. et al. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Env. Health Perspect. 124, 785–794 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Eminson, K. et al. Does air pollution confound associations between environmental noise and cardiovascular outcomes? — A systematic review. Env. Res. 232, 116075 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rajagopalan, S. & Landrigan, P. J. Pollution and the heart. N. Engl. J. Med. 385, 1881–1892 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abohashem, S. et al. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. Eur. Heart J. 42, 761–772 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuntic, M. et al. Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: implications for human disease burden. Redox Biol. 83, 103644 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wold, L. E. et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Heart Fail. 5, 452–461 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. et al. Potential molecular mechanism of cardiac hypertrophy in mice induced by exposure to ambient PM2. 5. Ecotoxicol. Environ. Saf. 224, 112659 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, T. et al. PM2.5-induced programmed myocardial cell death via mPTP opening results in deteriorated cardiac function in HFpEF mice. Cardiovasc. Toxicol. 22, 746–762 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, N. L. et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N. Engl. J. Med. 357, 1075–1082 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langrish, J. P. et al. Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man. J. Am. Heart Assoc. 2, e004309 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucking, A. J. et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation 123, 1721–1728 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, A. S. et al. Global association of air pollution and heart failure: a systematic review and meta-analysis. Lancet 382, 1039–1048 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Y. et al. Effect of air pollution on heart failure: systematic review and meta-analysis. Env. Health Perspect. 131, 76001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank. Eur. Heart J. 42, 1582–1591 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, L. et al. Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Env. Int. 132, 105004 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ward-Caviness, C. K. et al. Long-term exposure to particulate air pollution is associated with 30-day readmissions and hospital visits among patients with heart failure. J. Am. Heart Assoc. 10, e019430 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mentias, A. et al. Ambient air pollution exposure and adverse outcomes among medicare beneficiaries with heart failure. J. Am. Heart Assoc. 13, e032902 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kindi, S. G. et al. Ambient air pollution and mortality after cardiac transplantation. J. Am. Coll. Cardiology 74, 3026–3035 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vieira, J. L. et al. Respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail. 4, 55–64 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Vieira, J. L., Guimaraes, G. V., de Andre, P. A., Saldiva, P. H. & Bocchi, E. A. Effects of reducing exposure to air pollution on submaximal cardiopulmonary test in patients with heart failure: analysis of the randomized, double-blind and controlled FILTER-HF trial. Int. J. Cardiol. 215, 92–97 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rajagopalan, S. et al. Toward heart-healthy and sustainable cities: a policy statement from the American Heart Association. Circulation 149, e1067–e1089 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. I-epidemiology. Hypertension 80, 1375–1383 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahad, O. et al. Noise and air pollution as risk factors for hypertension: part. II-pathophysiologic insight. Hypertension 80, 1384–1392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Münzel, T., Sørensen, M. & Daiber, A. Transportation noise pollution and cardiovascular disease. Nat. Rev. Cardiol 18, 619–636 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hahad, O. et al. Cerebral consequences of environmental noise exposure. Environ. Int. 165, 107306 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu, X. et al. Long-term exposure to traffic noise and risk of incident cardiovascular diseases: a systematic review and dose-response meta-analysis. J. Urban Health 100, 788–801 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heritier, H. et al. Transportation noise exposure and cardiovascular mortality: a nationwide cohort study from Switzerland. Eur. J. Epidemiol. 32, 307–315 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vienneau, D. et al. Transportation noise exposure and cardiovascular mortality: 15-years of follow-up in a nationwide prospective cohort in Switzerland. Env. Int. 158, 106974 (2022).

    Article 

    Google Scholar
     

  • Thacher, J. D. et al. Exposure to transportation noise and risk for cardiovascular disease in a nationwide cohort study from Denmark. Env. Res. 211, 113106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, T. et al. Long-term exposure to road traffic noise and incident heart failure: evidence from UK Biobank. JACC Heart Fail. 11, 986–996 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidler, A. et al. Aircraft, road and railway traffic noise as risk factors for heart failure and hypertensive heart disease — a case-control study based on secondary data. Int. J. Hyg. Env. Health 219, 749–758 (2016).

    Article 

    Google Scholar
     

  • Bai, L. et al. Exposure to road traffic noise and incidence of acute myocardial infarction and congestive heart failure: a population-based cohort study in Toronto, Canada. Env. Health Perspect. 128, 87001 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Topriceanu, C. C. et al. Higher aircraft noise exposure is linked to worse heart structure and function by cardiovascular MRI. J. Am. Coll. Cardiol. 85, 454–469 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, H. W., Vlaanderen, J. J., Henderson, S. B. & Brauer, M. Correlation between co-exposures to noise and air pollution from traffic sources. Occup. Env. Med. 66, 347–350 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gale, J. E. et al. Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction. J. Biol. Rhythm. 26, 423–433 (2011).

    Article 

    Google Scholar
     

  • Kurose, T., Yabe, D. & Inagaki, N. Circadian rhythms and diabetes. J. Diabetes Investig. 2, 176–177 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, J., Yeh, B., Rakshit, K., Colwell, C. S. & Matveyenko, A. V. Circadian disruption and diet-induced obesity synergize to promote development of beta-cell failure and diabetes in male rats. Endocrinology 156, 4426–4436 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamble, K. L., Berry, R., Frank, S. J. & Young, M. E. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 10, 466–475 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stenvers, D. J., Scheer, F., Schrauwen, P., la Fleur, S. E. & Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15, 75–89 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cribbet, M. R. et al. Circadian rhythms and metabolism: from the brain to the gut and back again. Ann. N. Y. Acad. Sci. 1385, 21–40 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masri, S. & Sassone-Corsi, P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14, 69–75 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masri, S., Zocchi, L., Katada, S., Mora, E. & Sassone-Corsi, P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann. N. Y. Acad. Sci. 1264, 103–109 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, V. R., Eckel-Mahan, K., Sassone-Corsi, P. & Baldi, P. CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics. Nat. Methods 9, 772–773 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zubidat, A. E. & Haim, A. Artificial light-at-night — a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J. Basic Clin. Physiol. Pharmacol. 28, 295–313 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palanivel, R. et al. Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. iScience 23, 101728 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, C. et al. Shift work, genetic factors, and the risk of heart failure: a prospective study of the UK biobank. Mayo Clin. Proc. 97, 1134–1144 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Li, X., He, Y., Wang, D. & Momeni, M. R. Chronobiological disruptions: unravelling the interplay of shift work, circadian rhythms, and vascular health in the context of stroke risk. Clin. Exp. Med. 25, 6 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lane, K. J. et al. Associations between greenness, impervious surface area, and nighttime lights on biomarkers of vascular aging in Chennai, India. Env. Health Perspect. 125, 087003 (2017).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Role of nighttime light in the association between air pollution exposure and cardiovascular disease. J. Am. Heart Assoc. 14, e042835 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, X. et al. Outdoor light at night and mortality in the UK Biobank: a prospective cohort study. Occup. Env. Med. https://doi.org/10.1136/oemed-2023-109036 (2023).

    Article 

    Google Scholar
     

  • Martinez-Morata, I. et al. Association of urinary metals with cardiovascular disease incidence and all-cause mortality in the multi-ethnic study of atherosclerosis (MESA). Circulation 150, 758–769 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGraw, K. E. et al. Urinary metal levels and coronary artery calcification: longitudinal evidence in the multi-ethnic study of atherosclerosis. J. Am. Coll. Cardiol. 84, 1545–1557 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A. & Chowdhuri, D. K. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262, 128350 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borne, Y. et al. Cadmium exposure and incidence of heart failure and atrial fibrillation: a population-based prospective cohort study. BMJ Open 5, e007366 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, J. L., Perlstein, T. S., Perry, M. J., McNeely, E. & Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Env. Res. 110, 199–206 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Vaziri, N. D. Mechanisms of lead-induced hypertension and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiology 295, H454–H465 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Navas-Acien, A., Guallar, E., Silbergeld, E. K. & Rothenberg, S. J. Lead exposure and cardiovascular disease — a systematic review. Env. Health Perspect. 115, 472–482 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. Y. et al. Left ventricular structure and function in relation to environmental exposure to lead and cadmium. J. Am. Heart Assoc. 6, e004692 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bello, K. A. et al. Chronic exposure to mercury increases arrhythmia and mortality post-acute myocardial infarction in rats. Front. Physiol. 14, 1260509 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, X. et al. Association of selenium and cadmium with heart failure and mortality based on the National Health and Nutrition Examination Survey. J. Hum. Nutr. Diet. 36, 1496–1506 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sears, C. G. et al. Urinary cadmium and incident heart failure: a case-cohort analysis among never-smokers in Denmark. Epidemiology 33, 185–192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman-Cribbin, W. et al. Relationship between urinary uranium and cardiac geometry and left ventricular function: the Strong Heart study. JACC Adv. 3, 101408 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pichler, G. et al. Association of arsenic exposure with cardiac geometry and left ventricular function in young adults. Circ. Cardiovasc. Imaging 12, e009018 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • George, C. M. et al. Effect of an arsenic mitigation program on arsenic exposure in American Indian communities: a cluster randomized controlled trial of the community-led Strong Heart Water Study program. Env. Health Perspect. 132, 37007 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lamas, G. A. et al. Edetate disodium-based chelation for patients with a previous myocardial infarction and diabetes: TACT2 randomized clinical trial. JAMA 332, 794–803 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravalli, F. et al. Chelation therapy in patients with cardiovascular disease: a systematic review. J. Am. Heart Assoc. 11, e024648 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury, R. et al. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362, k3310 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alahmad, B. et al. Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries. Circulation 147, 35–46 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Achebak, H. et al. Ambient temperature and risk of cardiovascular and respiratory adverse health outcomes: a nationwide cross-sectional study from Spain. Eur. J. Prev. Cardiol. 31, 1080–1089 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, N. et al. Heat and cardiovascular mortality: an epidemiological perspective. Circ. Res. 134, 1098–1112 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Schrijver, E. et al. Nationwide projections of heat- and cold-related mortality impacts under various climate change and population development scenarios in Switzerland. Env. Res. Lett. 18, 094010 (2023).

    Article 

    Google Scholar
     

  • Mugele, H. et al. Control of blood pressure in the cold: differentiation of skin and skeletal muscle vascular resistance. Exp. Physiol. 108, 38–49 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. & Kim, H. Influence of ambient temperature and diurnal temperature range on incidence of cardiac arrhythmias. Int. J. Biometeorol. 61, 407–416 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Meade, R. D. et al. Meta-analysis of heat-induced changes in cardiac function from over 400 laboratory-based heat exposure studies. Nat. Commun. 16, 2543 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, J. et al. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 112, 2286–2292 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Green, D. J. et al. Impaired skin blood flow response to environmental heating in chronic heart failure. Eur. Heart J. 27, 338–343 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wilker, E. H. et al. Ambient temperature and biomarkers of heart failure: a repeated measures analysis. Env. Health Perspect. 120, 1083–1087 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, H. et al. Is greater temperature change within a day associated with increased emergency hospital admissions for heart failure? Circ. Heart Fail. 6, 930–935 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pan, R. et al. Association between ambient temperature and cause-specific cardiovascular disease admissions in Japan: a nationwide study. Env. Res. 225, 115610 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jimba, T. et al. Association of ambient temperature and acute heart failure with preserved and reduced ejection fraction. ESC Heart Fail. 9, 2899–2908 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munzel, T. et al. Challenges posed by climate hazards to cardiovascular health and cardiac intensive care: implications for mitigation and adaptation. Eur. Heart J. Acute Cardiovasc. Care 13, 731–744 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vishram-Nielsen, J. K. et al. Association between the incidence of hospitalizations for acute cardiovascular events, weather, and air pollution. JACC Adv. 2, 100334 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, H.-I. et al. Increased medical visits and mortality among adults with cardiovascular diseases in severely affected areas after Typhoon Morakot. Int. J. Environ. Res. Public Health 17, 6531 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. Tropical cyclone exposures and risks of emergency medicare hospital admission for cardiorespiratory diseases in 175 urban United States counties, 1999–2010. Epidemiology 32, 315–326 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danesh Yazdi, M. et al. The effect of long-term exposure to air pollution and seasonal temperature on hospital admissions with cardiovascular and respiratory disease in the United States: a difference-in-differences analysis. Sci. Total. Env. 843, 156855 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nieuwenhuijsen, M. J. Green infrastructure and health. Annu. Rev. Public Health 42, 317–328 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pereira, G. et al. The association between neighborhood greenness and cardiovascular disease: an observational study. BMC Public Health 12, 466 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeager, R. et al. Association between residential greenness and cardiovascular disease risk. J. Am. Heart Assoc. 7, e009117 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dazard, J. E. et al. Association of genetic variants with modifiable environmental factor in cardiovascular disease risk: a UK Biobank Mendelian randomization study. J. Am. Coll. Cardiol 85, a331 (2025).

    Article 

    Google Scholar
     

  • Iyer, H. S. et al. Impact of neighborhood socioeconomic status, income segregation, and greenness on blood biomarkers of inflammation. Env. Int. 162, 107164 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, K. et al. Relationship of neighborhood greenness to heart disease in 249 405 US medicare beneficiaries. J. Am. Heart Assoc. 8, e010258 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, T. et al. Association of neighborhood greenness exposure with cardiovascular diseases and biomarkers. Int. J. Hyg. Env. Health 234, 113738 (2021).

    Article 

    Google Scholar
     

  • Chen, H. et al. Residential greenness and cardiovascular disease incidence, readmission, and mortality. Env. Health Perspect. 128, 87005 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Poulsen, A. H. et al. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. Lancet Reg. Health Eur. 31, 100655 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhopadhyay, A. et al. Neighborhood-level socioeconomic status and prescription fill patterns among patients with heart failure. JAMA Netw. Open 6, e2347519 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowaleski-Jones, L. et al. Walkable neighborhoods and obesity: evaluating effects with a propensity score approach. SSM Popul. Health 6, 9–15 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Son, W. H., Park, H. T., Jeon, B. H. & Ha, M. S. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. Sci. Rep. 13, 20172 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, Y. et al. Association between subjective walking speed and metabolic diseases in individuals with obesity: a cross-sectional analysis. Sci. Rep. 14, 28228 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drexel, H. et al. Downhill hiking improves low-grade inflammation, triglycerides, body weight and glucose tolerance. Sci. Rep. 11, 14503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J. D., Brauer, M. & Frank, L. D. Healthy neighborhoods: walkability and air pollution. Environ. Health Perspect. 117, 1752–1759 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howell, N. A., Tu, J. V., Moineddin, R., Chu, A. & Booth, G. L. Association between neighborhood walkability and predicted 10-year cardiovascular disease risk: the CANHEART (Cardiovascular Health in Ambulatory Care Research Team) cohort. J. Am. Heart Assoc. 8, e013146 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorczyca, A. M. et al. Change in physical activity and sitting time after myocardial infarction and mortality among postmenopausal women in the Women’s Health Initiative-Observational study. J. Am. Heart Assoc. 6, e005354 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • James, P. et al. Interrelationships between walkability, air pollution, greenness, and body mass index. Epidemiology 28, 780–788 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appleton, A. A., Holdsworth, E. A. & Kubzansky, L. D. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr. Environ. Health Rep. 3, 287–301 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Motairek, I., Chen, Z., Makhlouf, M. H., Rajagopalan, S. & Al-Kindi, S. Historical neighbourhood redlining and contemporary environmental racism. Local. Environ. 28, 518–528 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Kindi, S. et al. Historical neighborhood redlining and cardiovascular risk in patients with chronic kidney disease. Circulation 148, 280–282 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mentias, A. et al. Historical redlining, socioeconomic distress, and risk of heart failure among medicare beneficiaries. Circulation 148, 210–219 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fields, N. D. et al. Historical redlining and heart failure outcomes following hospitalization in the Southeastern United States. J. Am. Heart Assoc. 13, e032019 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvillo-King, L. et al. Impact of social factors on risk of readmission or mortality in pneumonia and heart failure: systematic review. J. Gen. Intern. Med. 28, 269–282 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hood, E. Dwelling disparities: how poor housing leads to poor health. Env. Health Perspect. 113, A310–A317 (2005).

    Article 

    Google Scholar
     

  • Zuluaga, M. C. et al. Housing conditions and mortality in older patients hospitalized for heart failure. Am. Heart J. 161, 950–955 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Abohashem, S. et al. Additive effect of high transportation noise exposure and socioeconomic deprivation on stress-associated neural activity, atherosclerotic inflammation, and cardiovascular disease events. J. Expo. Sci. Env. Epidemiol. 35, 62–69 (2025).

    Article 

    Google Scholar
     

  • Dewan, P. et al. Income inequality and outcomes in heart failure: a global between-country analysis. JACC Heart Fail. 7, 336–346 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tromp, J. et al. Post-discharge prognosis of patients admitted to hospital for heart failure by world region, and national level of income and income disparity (REPORT-HF): a cohort study. Lancet Glob. Health 8, e411–e422 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hahad, O. et al. Exposomic determinants of atherosclerosis: recent evidence. Curr. Atheroscler. Rep. 27, 28 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborne, M. T. et al. The combined effect of air and transportation noise pollution on atherosclerotic inflammation and risk of cardiovascular disease events. J. Nucl. Cardiol. 30, 665–679 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Al-Kindi, S. Leveraging geospatial data science to uncover novel environmental predictors of cardiovascular disease. JACC Adv. 2, 100371 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, R. et al. Big data, big insights: leveraging data analytics to unravel cardiovascular exposome complexities. Methodist. Debakey Cardiovasc. J. 20, 111–123 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felker, G. M. & Teerlink, J. R. in Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine 12th edn Ch. 49 (eds Libby, P. et al.) 946–974 (Elsevier, 2022).

  • Zacharias, M., Al-Kindi, S. & Rajagopalan, S. Isolating noise from signals in the air. JACC Heart Fail. 11, 997–999 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahad, O. & Al-Kindi, S. Heavy metal, heavy heart: adverse cardiovascular effects of uranium exposure. JACC Adv. 3, 101404 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozkurt, B. et al. HF STATS 2024: heart failure epidemiology and outcomes statistics an updated 2024 report from the Heart Failure Society of America. J. Card. Fail. 31, 66–116 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, Y. et al. Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol. Int. 32, 1294–1310 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dar, T. et al. Psychosocial stress and cardiovascular disease. Curr. Treat. Options Cardiovasc. Med. 21, 23 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar