• Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Boehm, S. et al. State of Climate Action 2023 (World Resources Institute, 2023); https://doi.org/10.46830/wrirpt.23.00010

  • Forster, P. M. et al. Indicators of global climate change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).

    Article 

    Google Scholar
     

  • Byers, E. et al. AR6 Scenarios Database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).

  • Riahi, K. et al. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  • Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).

    Article 

    Google Scholar
     

  • Deprez, B. A. et al. Sustainability limits needed for CO2 removal. Science 383, 484–486 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Braun, J. et al. Multiple planetary boundaries preclude biomass crops for carbon capture and storage outside of agricultural areas. Commun. Earth Environ. 6, 1–14 (2025).

    Article 

    Google Scholar
     

  • Pörtner, H. O. et al. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.001

  • Wood Hansen, O. & van den Bergh, J. Environmental problem shifting from climate change mitigation: a mapping review. Proc. Natl Acad. Sci. USA Nexus 3, pgad448 (2024).


    Google Scholar
     

  • Vaidyanathan, G. Integrated assessment climate policy models have proven useful, with caveats. Proc. Natl Acad. Sci. USA 118, e2101899118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 agenda. Nat. Clim. Change 11, 656–664 (2021).

    Article 

    Google Scholar
     

  • Hirata, A. et al. The choice of land-based climate change mitigation measures influences future global biodiversity loss. Commun. Earth Environ. 5, 259 (2024).

    Article 

    Google Scholar
     

  • Hanssen, S. V. et al. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Clim. Change 163, 1569–1586 (2020).

    Article 

    Google Scholar
     

  • Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    Article 

    Google Scholar
     

  • Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Azuero-Pedraza, C. G., Lauri, P., Lessa Derci Augustynczik, A. & Thomas, V. M. Managing forests for biodiversity conservation and climate change mitigation. Environ. Sci. Technol. 58, 9175–9186 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Powell, T. W. R. & Lenton, T. M. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity. Environ. Res. Lett. 8, 025024 (2013).

    Article 

    Google Scholar
     

  • Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Article 

    Google Scholar
     

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 

    Google Scholar
     

  • Jantz, S. M. et al. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv. Biol. 29, 1122–1131 (2015).

    Article 

    Google Scholar
     

  • Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Price, J., Warren, R. & Forstenhäusler, N. Biodiversity losses associated with global warming of 1.5 to 4 °C above pre-industrial levels in six countries. Clim. Change 177, 47 (2024).

    Article 

    Google Scholar
     

  • IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844

  • Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. A/RES/71/313 (United Nations, 2017).

  • Kunming–Montreal Global Biodiversity Framework. CBD/COP/DEC/15/4 (CBD, 2022).

  • Fujimori, S. et al. Downscaling Global Emissions and Its Implications Derived from Climate Model Experiments. PLoS One 12, e0169733–e0169733 (2017).

    Article 

    Google Scholar
     

  • Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article 

    Google Scholar
     

  • IMAGE Framework Version Overview (PBL, 2025).

  • van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article 

    Google Scholar
     

  • Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).

    Article 

    Google Scholar
     

  • Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

    Article 

    Google Scholar
     

  • Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article 

    Google Scholar
     

  • Fesenmyer, K. A. et al. Addressing critiques refines global estimates of reforestation potential for climate change mitigation. Nat. Commun. 16, 4572 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Stenzel, F. et al. biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators—human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk). Geosci. Model Dev. 17, 3235–3258 (2024).

    Article 

    Google Scholar
     

  • Smith, J. R., Beaury, E. M., Cook-Patton, S. C. & Levine, J. M. Variable impacts of land-based climate mitigation on habitat area for vertebrate diversity. Science 387, 420–425 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hu, X., Huang, B., Verones, F., Cavalett, O. & Cherubini, F. Overview of recent land-cover changes in biodiversity hotspots. Front. Ecol. Environ. 19, 91–97 (2021).

    Article 

    Google Scholar
     

  • Winberg, J., Smith, H. G. & Ekroos, J. Bioenergy crops, biodiversity and ecosystem services in temperate agricultural landscapes—a review of synergies and trade-offs. GCB Bioenergy 15, 1204–1220 (2023).

    Article 

    Google Scholar
     

  • ESA CCI/C3S Global Land Cover product 2022 v2.1.1 (ESA, 2022); https://maps.elie.ucl.ac.be/CCI/viewer/download.php

  • Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).

    Article 

    Google Scholar
     

  • Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. USA 119, e2117297119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).

    Article 

    Google Scholar
     

  • Soergel, B. et al. Multiple pathways towards sustainable development goals and climate targets. Environ. Res. Lett. 19, 124009 (2024).

    Article 

    Google Scholar
     

  • Doelman, J. C. et al. Quantifying synergies and trade-offs in the global water-land–food–climate nexus using a multi-model scenario approach. Environ. Res. Lett. 17, 045004 (2022).

    Article 

    Google Scholar
     

  • Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).

    Article 
    CAS 

    Google Scholar
     

  • World Bank Country and Lending Groups (World Bank, 2025); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

  • Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C. F. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rajamani, L. et al. National ‘fair shares’ in reducing greenhouse gas emissions within the principled framework of international environmental law. Clim. Policy 21, 983–1004 (2021).

    Article 

    Google Scholar
     

  • United Nations Framework Convention On Climate Change (United Nations, 1992).

  • Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. https://doi.org/10.3389/fclim.2021.664130 (2021).

  • Jäger, F. et al. Fire weather compromises forestation-reliant climate mitigation pathways. Earth Syst. Dyn. 15, 1055–1071 (2024).

    Article 

    Google Scholar
     

  • Fujimori, S. et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 3, 110–121 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).

    Article 

    Google Scholar
     

  • Weiskopf, S. R. et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 15, 4354 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).

    Article 

    Google Scholar
     

  • Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).

    Article 

    Google Scholar
     

  • Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

    Article 

    Google Scholar
     

  • Prütz, R., Fuss, S., Lück, S., Stephan, L. & Rogelj, J. A taxonomy to map evidence on the co-benefits, challenges, and limits of carbon dioxide removal. Commun. Earth Environ. 5, 1–11 (2024).

    Article 

    Google Scholar
     

  • Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).

    Article 

    Google Scholar
     

  • Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article 

    Google Scholar
     

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Stenzel, F., Gerten, D. & Hanasaki, N. Global scenarios of irrigation water abstractions for bioenergy production: a systematic review. Hydrol. Earth Syst. Sci. 25, 1711–1726 (2021).

    Article 

    Google Scholar
     

  • Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environ. Res. Lett. 13, 024011 (2018).

    Article 

    Google Scholar
     

  • Næss, J. S., Cavalett, O. & Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525–536 (2021).

    Article 

    Google Scholar
     

  • Werling, B. P. et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl Acad. Sci. USA 111, 1652–1657 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Immerzeel, D. J., Verweij, P. A., van der Hilst, F. & Faaij, A. P. C. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6, 183–209 (2014).

    Article 

    Google Scholar
     

  • Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bergero, C., Wise, M., Lamers, P., Wang, Y. & Weber, M. Biochar as a carbon dioxide removal strategy in integrated long-run mitigation scenarios. Environ. Res. Lett. 19, 074076 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Rueda, O., Mogollón, J. M., Tukker, A. & Scherer, L. Negative-emissions technology portfolios to meet the 1.5 °C target. Glob. Environ. Change 67, 102238 (2021).

  • Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01604-9 (2023).

  • Rodriguez Mendez, Q., Creutzig, F. & Fuss, S. Deep uncertainty in carbon dioxide removal portfolios. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/adc613 (2025).

  • Terlouw, T., Treyer, K., Bauer, C. & Mazzotti, M. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ. Sci. Technol. 55, 11397–11411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Adam, M., Kleinen, T., May, M. M. & Rehfeld, K. Land conversions not climate effects are the dominant indirect consequence of sun-driven CO2 capture, conversion, and sequestration. Environ. Res. Lett. 20, 034011 (2025).

    Article 

    Google Scholar
     

  • Shindell, D. & Rogelj, J. Preserving carbon dioxide removal to serve critical needs. Nat. Clim. Change https://doi.org/10.1038/s41558-025-02251-y (2025).

  • Buck, H. J., Carton, W., Lund, J. F. & Markusson, N. Why residual emissions matter right now. Nat. Clim. Change 13, 351–358 (2022).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).

    Article 

    Google Scholar
     

  • Warren, R., Price, J., VanDerWal, J., Cornelius, S. & Sohl, H. The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Clim. Change 147, 395–409 (2018).

    Article 

    Google Scholar
     

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article 

    Google Scholar
     

  • Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199 (2002).

    Article 

    Google Scholar
     

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/ZENODO.3261807 (2016).

  • Noss, R. F. et al. How global biodiversity hotspots may go unrecognized: lessons from the North American coastal plain. Divers. Distrib. 21, 236–244 (2015).

    Article 

    Google Scholar
     

  • Williams, K. J. et al. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) (Springer, 2011); https://doi.org/10.1007/978-3-642-20992-5_16

  • Elson, P. et al. SciTools/cartopy: REL: v0.24.1. Zenodo https://doi.org/10.5281/ZENODO.1182735 (2024).

  • Prütz, R. et al. Biodiversity implications of land-intensive carbon dioxide removal. Zenodo https://doi.org/10.5281/ZENODO.15210722 (2025).

  • Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Article 

    Google Scholar
     

  • Fujimori, S. & Hasegawa, T. AIM-SSP/RCP gridded emissions and land-use data. National Institute for Environmental Studies, Japan https://doi.org/10.18959/20180403.001 (2018).

  • Frank, S. et al. Land-based climate change mitigation potentials within the agenda for sustainable development. Environ. Res. Lett. 16, 24006 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Doelman, J. C. & Stehfest, E. The risks of overstating the climate benefits of ecosystem restoration. Nature 609, E1–E3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Scherer, L. et al. Biodiversity impact assessment considering land use intensities and fragmentation. Environ. Sci. Technol. 57, 19612–19623 (2023).

    Article 
    CAS 

    Google Scholar
     

  • World Administrative Boundaries—Countries and Territories (World Food Programme, 2019).

  • Pelz, S. Unofficial regional—iso3c mapping. GitHub https://github.com/setupelz/regioniso3c (2024).

  • Country classification (UNCTAD, 2025); https://unctadstat.unctad.org/EN/Classifications.html

  • Stuart-Smith, R. F. et al. Implications of states’ dependence on carbon dioxide removal for achieving the Paris temperature goal. Clim. Policy https://doi.org/10.1080/14693062.2025.2528775 (2025).

  • Chen, M. et al. Global Land Use for 2015–2100 at 0.05° Resolution Under Diverse Socioeconomic and Climate Scenarios (Pacific Northwest National Laboratory 2, 2020); https://doi.org/10.25584/DATA.2020-07.1357/1644253

  • Krisztin, T., Havlik, P. & Leclère, D. Downscaled land cover for SSP IAM ‘marker’ scenarios, 2010–2100. Zenodo https://doi.org/10.5281/ZENODO.15964077 (2025).

  • Doelman, J. & Daioglou, V. Gridded SSP-RCP land cover data from IMAGE 3.0.1. Zenodo https://doi.org/10.5281/ZENODO.17046335 (2025).

  • Popp, A. & Humpenöder, F. Gridded SSP-RCP land cover data from REMIND-MAgPIE 1.6-3.0. Zenodo https://doi.org/10.5281/ZENODO.17047534 (2025).

  • Braun, J. et al. Code and data for ‘Multiple planetary boundaries preclude BECCS outside of agricultural areas’. Zenodo https://doi.org/10.5281/ZENODO.14514051 (2024).