Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).
Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 1–11 (2016).
Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).
Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory Vol. 164 (Springer, 2011).
Binder, K. & Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magnet. Magnet. Materi. 509, 166711 (2020).
Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).
Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, 29–64 (1988).
Karube, K. et al. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Sci. Adv. 4, 7043 (2018).
Kurumaji, T. et al. Skyrmion lattice with a giant topological hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).
Duine, R., Lee, K.-J., Parkin, S. S. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).
Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).
Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).
Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 4450 (2019).
Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).
Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2d magnets. Science 374, 1140–1144 (2021).
Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer cri3. Nat. Nanotechnol. 17, 143–147 (2022).
Xiao, F., Chen, K. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).
Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).
Akram, M. & Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 103, 140406 (2021).
Zheng, F. Magnetic skyrmion lattices in a novel 2D-twisted bilayer magnet. Adv. Funct. Mater. 33, 2206923 (2023).
Kim, K.-M., Go, G., Park, M. J. & Kim, S. K. Emergence of stable meron quartets in twisted magnets. Nano Lett. 24, 74–81 (2023).
Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. 19, 1150–1155 (2023).
Cheng, G. et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nat. Electron. 6, 434–442 (2023).
Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, 8897 (2019).
Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).
Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Science 389, 736–740 (2025).
Brown Jr, W. F. The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968).
Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).
Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).
Huang, M. et al. Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope. Nat. Commun. 14, 5259 (2023).
Yang, B. et al. Macroscopic tunneling probe of moiré spin textures in twisted CrI3. Nat. Commun. 15, 4982 (2024).
Reith, P., Wang, X. R. & Hilgenkamp, H. Analysing magnetism using scanning squid microscopy. Rev. Sci. Instrum. 88, 123706 (2017).
Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).
Wang, C. et al. Fractional Chern insulator in twisted bilayer mote 2. Phys. Rev. Lett. 132, 036501 (2024).
McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).
Guo, X. et al. Structural monoclinicity and its coupling to layered magnetism in few-layer CrI3. ACS Nano 15, 10444–10450 (2021).
Cantos-Prieto, F. et al. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets. Nano Lett. 21, 3379–3385 (2021).
Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).
Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).
Kato, Y. D., Okamura, Y., Hirschberger, M., Tokura, Y. & Takahashi, Y. Topological magneto-optical effect from skyrmion lattice. Nat. Commun. 14, 5416 (2023).
Li, X. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. 20, 1145–1151 (2024)
Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).
Jang, M. et al. Direct observation of twisted stacking domains in the van der Waals magnet CrI3. Nat. Commun. 15, 5925 (2024).
Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).
Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).
Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor crsbr. Nano Lett. 21, 3511–3517 (2021).
Casas, B. W. et al. Coexistence of merons with skyrmions in the centrosymmetric van der Waals ferromagnet Fe5−xGeTe2. Adv. Mater. 35, 2212087 (2023).
Grebenchuk, S. et al. Topological spin textures in an insulating van der Waals ferromagnet. Adv. Mater. 36, 2311949 (2024).
Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).
Augustin, M., Jenkins, S., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3. Nat. Commun. 12, 185 (2021).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).
Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).
Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).
Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).
Peng, R. All raw data corresponding to manuscript “Super-moiré spin textures in twisted 2D antiferromagnets”. Zenodo https://doi.org/10.5281/zenodo.17545114 (2025).