• Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 1, 1–11 (2016).

    Article 

    Google Scholar
     

  • Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

    Article 

    Google Scholar
     

  • Lacroix, C., Mendels, P., Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory Vol. 164 (Springer, 2011).

  • Binder, K. & Young, A. P. Spin glasses: Experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magnet. Magnet. Materi. 509, 166711 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, 29–64 (1988).

    Article 

    Google Scholar
     

  • Karube, K. et al. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet. Sci. Adv. 4, 7043 (2018).

    Article 

    Google Scholar
     

  • Kurumaji, T. et al. Skyrmion lattice with a giant topological hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duine, R., Lee, K.-J., Parkin, S. S. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. 14, 217–219 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legrand, W. et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat. Mater. 19, 34–42 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 4450 (2019).

    Article 

    Google Scholar
     

  • Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, F. et al. Moiré patterns in 2D materials: a review. ACS Nano 15, 5944–5958 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2d magnets. Science 374, 1140–1144 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer cri3. Nat. Nanotechnol. 17, 143–147 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, F., Chen, K. & Tong, Q. Magnetization textures in twisted bilayer CrX3 (X = Br, I). Phys. Rev. Res. 3, 013027 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akram, M. & Erten, O. Skyrmions in twisted van der Waals magnets. Phys. Rev. B 103, 140406 (2021).

    Article 

    Google Scholar
     

  • Zheng, F. Magnetic skyrmion lattices in a novel 2D-twisted bilayer magnet. Adv. Funct. Mater. 33, 2206923 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, K.-M., Go, G., Park, M. J. & Kim, S. K. Emergence of stable meron quartets in twisted magnets. Nano Lett. 24, 74–81 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. 19, 1150–1155 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, G. et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nat. Electron. 6, 434–442 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv. 5, 8897 (2019).

    Article 

    Google Scholar
     

  • Uri, A. et al. Superconductivity and strong interactions in a tunable moiré quasicrystal. Nature 620, 762–767 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Strong interactions and isospin symmetry breaking in a supermoiré lattice. Science 389, 736–740 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown Jr, W. F. The fundamental theorem of fine-ferromagnetic-particle theory. J. Appl. Phys. 39, 993–994 (1968).

    Article 

    Google Scholar
     

  • Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maletinsky, P. et al. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, M. et al. Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope. Nat. Commun. 14, 5259 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Macroscopic tunneling probe of moiré spin textures in twisted CrI3. Nat. Commun. 15, 4982 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reith, P., Wang, X. R. & Hilgenkamp, H. Analysing magnetism using scanning squid microscopy. Rev. Sci. Instrum. 88, 123706 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nam, N. N. & Koshino, M. Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B 96, 075311 (2017).

    Article 

    Google Scholar
     

  • Wang, C. et al. Fractional Chern insulator in twisted bilayer mote 2. Phys. Rev. Lett. 132, 036501 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Structural monoclinicity and its coupling to layered magnetism in few-layer CrI3. ACS Nano 15, 10444–10450 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantos-Prieto, F. et al. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets. Nano Lett. 21, 3379–3385 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, S. H. et al. Torsional periodic lattice distortions and diffraction of twisted 2D materials. Nat. Commun. 13, 7826 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdanov, A. N. & Panagopoulos, C. Physical foundations and basic properties of magnetic skyrmions. Nat. Rev. Phys. 2, 492–498 (2020).

    Article 

    Google Scholar
     

  • Kato, Y. D., Okamura, Y., Hirschberger, M., Tokura, Y. & Takahashi, Y. Topological magneto-optical effect from skyrmion lattice. Nat. Commun. 14, 5416 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Topological Kerr effects in two-dimensional magnets with broken inversion symmetry. Nat. Phys. 20, 1145–1151 (2024)

  • Li, S. et al. Observation of stacking engineered magnetic phase transitions within moiré supercells of twisted van der Waals magnets. Nat. Commun. 15, 5712 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang, M. et al. Direct observation of twisted stacking domains in the van der Waals magnet CrI3. Nat. Commun. 15, 5925 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor crsbr. Nano Lett. 21, 3511–3517 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casas, B. W. et al. Coexistence of merons with skyrmions in the centrosymmetric van der Waals ferromagnet Fe5−xGeTe2. Adv. Mater. 35, 2212087 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Grebenchuk, S. et al. Topological spin textures in an insulating van der Waals ferromagnet. Adv. Mater. 36, 2311949 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zur, Y. et al. Magnetic imaging and domain nucleation in CrSBr down to the 2D limit. Adv. Mater. 35, 2307195 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Augustin, M., Jenkins, S., Evans, R. F. L., Novoselov, K. S. & Santos, E. J. G. Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3. Nat. Commun. 12, 185 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Article 

    Google Scholar
     

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep. 895, 1–28 (2021).

    Article 

    Google Scholar
     

  • Zhang, L., Ren, J., Wang, J.-S. & Li, B. Topological magnon insulator in insulating ferromagnet. Phys. Rev. B 87, 144101 (2013).

    Article 

    Google Scholar
     

  • Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article 

    Google Scholar
     

  • Peng, R. All raw data corresponding to manuscript “Super-moiré spin textures in twisted 2D antiferromagnets”. Zenodo https://doi.org/10.5281/zenodo.17545114 (2025).