• Ullah, S., Aldossary, A., Ullah, W. & Al-Ghamdi, S. G. Augmented human thermal discomfort in urban centers of the Arabian Peninsula. Sci. Rep. 14, 3974 (2024).


    Google Scholar
     

  • Velázquez, J. et al. Walkability under climate pressure: application to three UNESCO World Heritage cities in Central Spain. Land 12, 944 (2023).


    Google Scholar
     

  • Tahir, F., Dieng, F. N. & Al‐Ghamdi, S. G. in Sustainable Cities in a Changing Climate: Enhancing Urban Resilience (ed. Al-Ghamdi, S. G.) 251–262 (Wiley, 2023).

  • Koetse, M. J. & Rietveld, P. The impact of climate change and weather on transport: an overview of empirical findings. Transp. Res. D Transp. Environ. 14, 205–221 (2009).


    Google Scholar
     

  • Elhamy Kamel, M. A. Encouraging walkability in GCC cities: smart urban solutions. Smart Sustain. Built Environ. 2, 288–310 (2013).


    Google Scholar
     

  • Takacs, T., Pearce, S. & Kristjansson, E. Adaptation of the neighbourhood environment walkability scale for use in northern climates: the NEWS-North (breakout presentation). J. Transp. Health 7, S69–S70 (2017).


    Google Scholar
     

  • Galal, L. A. & El Hady, N. Assessing walkability to mitigate climate change and empower women in a vulnerable coastal settlement. Environ. Ecol. Res. 11, 697–711 (2023).


    Google Scholar
     

  • Zuniga-Teran, A. in Climate Change-Sensitive Cities: Building Capacities for Urban Resilience, Sustainability, and Equity (ed. Delgado Ramos, G. C.) 163–179 (Research Program on Climate Change of the National Autonomous University of Mexico, 2017).

  • Kim, M. J. & Michael Hall, C. Is tourist walkability and well-being different? Curr. Issues Tourism 26, 171–176 (2023).


    Google Scholar
     

  • Hall, C. M. & Ram, Y. Weather and climate in the assessment of tourism-related walkability. Int. J. Biometeorol. 65, 729–739 (2021).


    Google Scholar
     

  • Asiamah, N. in Sustainable Urbanism in Developing Countries (eds Chatterjee, U. et al.) Ch. 13 (CRC Press, 2022).

  • Dovey, K. & Pafka, E. What is walkability? The urban DMA. Urban Stud. 57, 93–108 (2020).


    Google Scholar
     

  • Bereitschaft, B. Neighborhood walkability and housing affordability among U.S. urban areas. Urban Sci. 3, 11 (2019).


    Google Scholar
     

  • Tobin, M. et al. Rethinking walkability and developing a conceptual definition of active living environments to guide research and practice. BMC Public Health 22, 450 (2022).


    Google Scholar
     

  • Rohana, R., Ardi, M., Ali Muh., I. & Hamkah, H. The application of the concept walkability in the city of Makassar in terms of behavioral aspects. In Proc. 1st World Conference on Social and Humanities Research (W-SHARE 2021) Vol. 654 (eds Djawad, Y. A. & Hasim, A. H.) https://doi.org/10.2991/assehr.k.220402.026 (Atlantis Press, 2022).

  • Knapskog, M., Hagen, O. H., Tennøy, A. & Rynning, M. K. Exploring ways of measuring walkability. Transp. Res. Proc. 41, 264–282 (2019).


    Google Scholar
     

  • Forsyth, A. What is a walkable place? The walkability debate in urban design. Urban Des. Int. 20, 274–292 (2015).


    Google Scholar
     

  • Makram, O. M. et al. Favorable neighborhood walkability is associated with lower burden of cardiovascular risk factors among patients within an integrated health system: the Houston Methodist Learning Health System Outpatient Registry. Curr. Probl. Cardiol. 48, 101642 (2023).


    Google Scholar
     

  • Wu, Y. et al. Association of walkability and fine particulate matter with chronic obstructive pulmonary disease: a cohort study in China. Sci. Total Environ. 858, 159780 (2023).


    Google Scholar
     

  • Okabe, D. et al. Neighborhood walkability in relation to knee and low back pain in older people: a multilevel cross-sectional study from the JAGES. Int. J. Environ. Res. Public Health 16, 4598 (2019).


    Google Scholar
     

  • Sundquist, K., Eriksson, U., Mezuk, B. & Ohlsson, H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place 31, 24–30 (2015).


    Google Scholar
     

  • Rundle, A. et al. Neighborhood food environment and walkability predict obesity in New York City. Environ. Health Perspect. 117, 442–447 (2009).


    Google Scholar
     

  • Berke, E. M., Gottlieb, L. M., Moudon, A. V. & Larson, E. B. Protective association between neighborhood walkability and depression in older men. J. Am. Geriatr. Soc. 55, 526–533 (2007).


    Google Scholar
     

  • Forsyth, A. & Southworth, M. Cities afoot—pedestrians, walkability and urban design. J. Urban Des. 13, 1–3 (2008).


    Google Scholar
     

  • Akkar Ercan, M. & Belge, Z. S. Measuring walkability for more liveable and sustainable cities. Ekistics New Habitat 80, 50–67 (2021).


    Google Scholar
     

  • Rafiemanzelat, R., Emadi, M. I. & Kamali, A. J. City sustainability: the influence of walkability on built environments. Transp. Res. Proc. 24, 97–104 (2017).


    Google Scholar
     

  • Wang, H. & Yang, Y. Neighbourhood walkability: a review and bibliometric analysis. Cities 93, 43–61 (2019).


    Google Scholar
     

  • Rundle, A. G. et al. Using GPS data to study neighborhood walkability and physical activity. Am. J. Prev. Med. 50, e65–e72 (2016).


    Google Scholar
     

  • Middleton, J. The socialities of everyday urban walking and the ‘right to the city’. Urban Stud. 55, 296–315 (2018).


    Google Scholar
     

  • Bamwesigye, D. & Hlavackova, P. Analysis of sustainable transport for smart cities. Sustainability 11, 2140 (2019).


    Google Scholar
     

  • Marshall, J. D., Brauer, M. & Frank, L. D. Healthy neighborhoods: walkability and air pollution. Environ. Health Perspect. 117, 1752–1759 (2009).


    Google Scholar
     

  • Yu, P. et al. Embedding of spatial equity in a rapidly urbanising area: walkability and air pollution exposure. Cities 131, 103942 (2022).


    Google Scholar
     

  • Newbery, D. M. Road damage externalities and road user charges. Econometrica 56, 295–316 (1988).


    Google Scholar
     

  • Hao, Z., Singh, V. & Hao, F. Compound extremes in hydroclimatology: a review. Water 10, 718 (2018).


    Google Scholar
     

  • Telesca, V., Lay-Ekuakille, A., Ragosta, M., Giorgio, G. & Lumpungu, B. Effects on public health of heat waves to improve the urban quality of life. Sustainability 10, 1082 (2018).


    Google Scholar
     

  • Mohammadi, S., De Angeli, S., Boni, G., Pirlone, F. & Cattari, S. Review article: current approaches and critical issues in multi-risk recovery planning of urban areas exposed to natural hazards. Nat. Hazards Earth Syst. Sci. 24, 79–107 (2024).

  • Sun, J. et al. Assessment of urban resilience and subsystem coupling coordination in the Beijing–Tianjin–Hebei urban agglomeration. Sustain. Cities Soc. 100, 105058 (2024).


    Google Scholar
     

  • Ebi, K. L. & Schmier, J. K. A stitch in time: improving public health early warning systems for extreme weather events. Epidemiol. Rev. 27, 115–121 (2005).


    Google Scholar
     

  • Abuwaer, N., Ullah, S. & Al‐Ghamdi, S. G. in Sustainable Cities in a Changing Climate: Enhancing Urban Resilience (ed. Al-Ghamdi, S. G.) 185–206 (Wiley, 2023).

  • Abayechaw, D. The main natural sources of global climate variability occurring even before the Industrial Era. OAJRC Environ. Sci. 3, 10–22 (2023).


    Google Scholar
     

  • Singh, R. L. & Singh, P. K. in Principles and Applications of Environmental Biotechnology for a Sustainable Future (ed. Singh, R. L.) 13–41 (Springer, 2017).

  • Du Plessis, A. Water as an Inescapable Risk (Springer, 2019).

  • Twine, T., Snyder, P. K., Hertel, W. & Mykleby, P. The urban heat island behavior of a large northern latitude metropolitan area. Semantic Scholar https://www.semanticscholar.org/paper/The-Urban-Heat-Island-Behavior-of-a-Large-Northern-Twine-Snyder/760ae19fcebb38cfb97550077512fb5897ce0d8a (2012).

  • Leal Filho, W., Echevarria Icaza, L., Neht, A., Klavins, M. & Morgan, E. A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 171, 1140–1149 (2018).


    Google Scholar
     

  • Phelan, P. E. et al. Urban heat island: mechanisms, implications, and possible remedies. Annu. Rev. Environ. Resour. 40, 285–307 (2015).


    Google Scholar
     

  • Gössling, S., Neger, C., Steiger, R. & Bell, R. Weather, climate change, and transport: a review. Nat. Hazards 118, 1341–1360 (2023).


    Google Scholar
     

  • Ganguly, A. R. & Steinhaeuser, K. Data mining for climate change and impacts. In Proc. 2008 IEEE International Conference on Data Mining Workshops (eds Bonchi, F. et al.) 385–394 (IEEE, 2008).

  • Ahmadalipour, A. & Moradkhani, H. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 117, 215–225 (2018).


    Google Scholar
     

  • Ullah, S. et al. Future population exposure to daytime and nighttime heat waves in South Asia. Earths Future 10, e2021EF002511 (2022).


    Google Scholar
     

  • Peng, Z., Bardhan, R., Ellard, C. & Steemers, K. Urban climate walk: a stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Build. Environ. 221, 109267 (2022).


    Google Scholar
     

  • Wang, Y. et al. Assessment of walkability and walkable routes of a 15-min city for heat adaptation: development of a dynamic attenuation model of heat stress. Front. Public Health 10, 1011391 (2022).


    Google Scholar
     

  • Lee, L. S. H., Cheung, P. K., Fung, C. K. W. & Jim, C. Y. Improving street walkability: biometeorological assessment of artificial-partial shade structures in summer sunny conditions. Int. J. Biometeorol. 64, 547–560 (2020).


    Google Scholar
     

  • Jia, S. & Wang, Y. Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: a case study in Hong Kong. Build. Environ. 201, 107988 (2021).


    Google Scholar
     

  • Dzyuban, Y. et al. Evidence of alliesthesia during a neighborhood thermal walk in a hot and dry city. Sci. Total Environ. 834, 155294 (2022).


    Google Scholar
     

  • Labdaoui, K., Mazouz, S., Moeinaddini, M., Cools, M. & Teller, J. The Street Walkability and Thermal Comfort Index (SWTCI): a new assessment tool combining street design measurements and thermal comfort. Sci. Total Environ. 795, 148663 (2021).

  • Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 34, 661–665 (2002).


    Google Scholar
     

  • Jeong, M.-A., Park, S. & Song, G.-S. Comparison of human thermal responses between the urban forest area and the central building district in Seoul, Korea. Urban For. Urban Green. 15, 133–148 (2016).


    Google Scholar
     

  • Lai, D. et al. A comprehensive review of thermal comfort studies in urban open spaces. Sci. Total Environ. 742, 140092 (2020).


    Google Scholar
     

  • Liu, J., Yao, R. & McCloy, R. A method to weight three categories of adaptive thermal comfort. Energy Build. 47, 312–320 (2012).


    Google Scholar
     

  • Ullah, S. et al. Characteristics of human thermal stress in South Asia during 1981–2019. Environ. Res. Lett.17, 104018 (2022).


    Google Scholar
     

  • Bröde, P., Krüger, E. L. & Rossi, F. A. Assessment of urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI. In Proc. 14th International Conference on Environmental Ergonomics (eds Kounalakis, S. & Koskolou, M.) 338–341 (National and Kapodestrian University of Athens, 2011).

  • Égerházi, L., Kántor, N. & Gulyás, Á. Investigation of human thermal comfort by observing the utilization of open-air terraces in catering places—a case study in Szeged. Acta Climatol. Chorol. 42–43, 29–37 (2009).


    Google Scholar
     

  • Nikolopoulou, M. & Steemers, K. Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build. 35, 95–101 (2003).


    Google Scholar
     

  • Walther, E., Mishra, A. K. & Forcadell, V. Influence of physiological variability on thermal comfort: a numerical evaluation. In Proc. 16th International Building Performance Simulation Association Conference (eds Corrado, V. et al.) 2465–2472 (IBPSA, 2019).

  • Litman, T. Cool walkability planning: providing pedestrian thermal comfort in hot climate cities. J. Civ. Eng. Environ. Sci. 9, 79–86 (2023).


    Google Scholar
     

  • Watanabe, S., Nagano, K., Ishii, J. & Horikoshi, T. Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Build. Environ. 82, 556–565 (2014).


    Google Scholar
     

  • Middel, A., Selover, N., Hagen, B. & Chhetri, N. Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. Int. J. Biometeorol. 60, 1849–1861 (2016).


    Google Scholar
     

  • Lai, D., Liu, W., Gan, T., Liu, K. & Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661, 337–353 (2019).


    Google Scholar
     

  • Johansson, E. Influence of urban geometry on outdoor thermal comfort in a hot dry climate: a study in Fez, Morocco. Build. Environ. 41, 1326–1338 (2006).


    Google Scholar
     

  • Krayenhoff, E. S. et al. Cooling hot cities: a systematic and critical review of the numerical modelling literature. Environ. Res. Lett. 16, 053007 (2021).


    Google Scholar
     

  • Larsen, L. Urban climate and adaptation strategies. Front. Ecol. Environ. 13, 486–492 (2015).


    Google Scholar
     

  • Taleghani, M., Sailor, D. & Ban-Weiss, G. A. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood. Environ. Res. Lett. 11, 024003 (2016).


    Google Scholar
     

  • Azmeer, A., Tahir, F. & Al-Ghamdi, S. G. Progress on green infrastructure for urban cooling: evaluating techniques, design strategies, and benefits. Urban Clim. 56, 102077 (2024).


    Google Scholar
     

  • Zölch, T., Maderspacher, J., Wamsler, C. & Pauleit, S. Using green infrastructure for urban climate-proofing: an evaluation of heat mitigation measures at the micro-scale. Urban For. Urban Green. 20, 305–316 (2016).


    Google Scholar
     

  • Aram, F., Solgi, E., Garcia, E. H. & Mosavi, A. Urban heat resilience at the time of global warming: evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 32, 117 (2020).


    Google Scholar
     

  • Ettinger, A. K. et al. Street trees provide an opportunity to mitigate urban heat and reduce risk of high heat exposure. Sci. Rep. 14, 3266 (2024).


    Google Scholar
     

  • Maggiotto, G., Miani, A., Rizzo, E., Castellone, M. D. & Piscitelli, P. Heat waves and adaptation strategies in a mediterranean urban context. Environ. Res. 197, 111066 (2021).


    Google Scholar
     

  • Sodoudi, S., Zhang, H., Chi, X., Müller, F. & Li, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green. 34, 85–96 (2018).


    Google Scholar
     

  • Tan, Z., Lau, K. K.-L. & Ng, E. Urban tree design approaches for mitigating daytime urban heat island effects in a high-density urban environment. Energy Build. 114, 265–274 (2016).


    Google Scholar
     

  • Sun, R. & Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 105, 27–33 (2012).


    Google Scholar
     

  • Desert, A., Naboni, E. & Garcia, D. The spatial comfort and thermal delight of outdoor misting installations in hot and humid extreme environments. Energy Build. 224, 110202 (2020).


    Google Scholar
     

  • Ulpiani, G., Di Giuseppe, E., Di Perna, C., D’Orazio, M. & Zinzi, M. Thermal comfort improvement in urban spaces with water spray systems: field measurements and survey. Build. Environ. 156, 46–61 (2019).


    Google Scholar
     

  • Rigolon, A., Tabassum, N. & Ewing, R. Climate adaptation strategies for active transportation: barriers and facilitators in U.S. cities. Sustain. Cities Soc. 117, 105956 (2024).


    Google Scholar
     

  • Keith, L. et al. Plan Integration for Resilience ScorecardTM (PIRSTM) for Heat: Spatially Evaluating Networks of Plans to Mitigate Heat (Version 1.0) (American Planning Association, 2022).

  • Gholami, M., Torreggiani, D., Tassinari, P. & Barbaresi, A. Developing a 3D city digital twin: enhancing walkability through a green pedestrian network (GPN) in the city of Imola, Italy. Land 11, 1917 (2022).

  • Delclòs-Alió, X. et al. Temperature and rain moderate the effect of neighborhood walkability on walking time for seniors in Barcelona. Int. J. Environ. Res. Public Health 17, 14 (2019).


    Google Scholar
     

  • Mouada, N., Zemmouri, N. & Meziani, R. Urban morphology, outdoor thermal comfort and walkability in hot, dry cities. Int. Rev. Spatial Plann. Sustain. Dev. 7, 117–133 (2019).


    Google Scholar
     

  • Maghelal, P.Walkability: a review of existing pedestrian indices. URISA J. 23, 5–19 (2011).


    Google Scholar
     

  • EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks (United States Environmental Protection Agency, 2023).

  • Fang, Z., Lin, Z., Mak, C. M., Niu, J. & Tse, K.-T. Investigation into sensitivities of factors in outdoor thermal comfort indices. Build. Environ. 128, 129–142 (2018).


    Google Scholar
     

  • Fiala, D. & Havenith, G. in The Mechanobiology and Mechanophysiology of Military-Related Injuries (eds. Gefen, A. & Epstein, Y.) 265–302 (Springer, 2015).