• Shi X, Wang J, Zeng F, Qiu X. Mitochondrial DNA cleavage patterns distinguish independent origin of Chinese domestic geese and Western domestic geese. Biochem Genet. 2006;44:237–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Boz M, Sarica M, Yamak U. Production traits of artificially and naturally hatched geese in intensive and free-range systems: I Growth traits. Br Poultry Sci. 2017;58(2):132–8.

    CAS 

    Google Scholar
     

  • Wen J, Li H, Wang H, Yu J, Zhu T, Zhang J, Li X, Jiang Z, Ning Z, Qu L. Origins, timing and introgression of domestic geese revealed by whole genome data. J Anim Sci Biotechnol. 2023;14(1):26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottenburghs J, Megens H-J, Kraus RH, Madsen O, van Hooft P, van Wieren SE, Crooijmans RP, Ydenberg RC, Groenen MA, Prins HH. A tree of geese: a phylogenomic perspective on the evolutionary history of true geese. Mol Phylogenet Evol. 2016;101:303–13.

    PubMed 

    Google Scholar
     

  • Kozák J. Goose production and goose products. World Poultry Sci J. 2021;77(2):403–14.

  • Heikkinen ME, Ruokonen M, White TA, Alexander MM, Gündüz İ, Dobney KM, Aspi J, Searle JB, Pyhäjärvi T. Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history. G3: Genes, Genomes, Genetics. 2020;10(9):3061–3070.

  • Tang J, Fang Q, Shao R, Shen J, He J, Niu D, Lu L. Digital gene-expression profiling analysis of the fatty liver of Landes geese fed different supplemental oils. Gene. 2018;673:32–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Kozák J. Variations of geese under domestication. World Poultry Sci J. 2019;75(2):247–60.


    Google Scholar
     

  • Zhao Q, Lin Z, Chen J, Xie Z, Wang J, Feng K, Lin W, Li H, Hu Z, Chen W. Chromosome-level genome assembly of goose provides insight into the adaptation and growth of local goose breeds. GigaScience. 2023;12:giad003.

    PubMed Central 

    Google Scholar
     

  • Tang J, Guo M, Fu J, Ouyang H, Tian Y, Shen X, Huang Y. Polymorphism analysis and expression patterns of the IGF1 gene in the Shitou goose. Arch Anim Breed. 2021;64(2):315–23.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Li S-M, Huang J, Chen S-Y, Liu Y-P. Mutations of TYR and MITF genes are associated with plumage colour phenotypes in geese. Asian Australas J Anim Sci. 2014;27(6):778.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Habashy W, Adomako K. The relationship between egg production, reproductive hormones, and the GDF9 gene in three different chicken strains. Animal Gene. 2023;27: 200147.

    CAS 

    Google Scholar
     

  • Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet. 2021;12:360.


    Google Scholar
     

  • Gao G, Liu R, Hu S, He M, Zhang J, Gao D, Li J, Hu J, Wang J, Wang Q. Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet. J Animal Sci Biotechnol. 2024;15(1):60.

    CAS 

    Google Scholar
     

  • Liu C, Ran X, Niu X, Li S, Wang J, Zhang Q. Insertion of 275-bp SINE into first intron of PDIA4 gene is associated with litter size in Xiang pigs. Anim Reprod Sci. 2018;195:16–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Magotra A, Naskar S, Das B, Ahmad T. A comparative study of SINE insertion together with a mutation in the first intron of follicle stimulating hormone beta gene in indigenous pigs of India. Mol Biol Rep. 2015;42:465–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Zheng Y, Wang M, Murani E, D’Alessandro E, Moawad AS, Wang X, Wimmers K, Song C. SINE insertion in the intron of pig GHR may decrease its expression by acting as a repressor. Animals. 2021;11(7):1871.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang N, Liu C, Lan T, Zhang Q, Cao Y, Pu G, Niu P, Zhang Z, Li Q, Zhou J. Polymorphism of VRTN gene g. 20311_20312ins291 was associated with the number of ribs, carcass diagonal length and cannon bone circumference in Suhuai pigs. Animals. 2020;10(3):484.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan Z, Li S, Liu Q, Wang Z, Zhou Z, Di R, An X, Miao B, Wang X, Hu W. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genomics. 2019;20:1–15.


    Google Scholar
     

  • Zhao P, Peng C, Fang L, Wang Z, Liu GE. Taming transposable elements in livestock and poultry: a review of their roles and applications. Genet Sel Evol. 2023;55(1):50.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao G, Gao D, Zhao X, Xu S, Zhang K, Wu R, Yin C, Li J, Xie Y, Hu S. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet. 2021;12: 602583.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao G, Zhang K, Huang P, Zhao X, Li Q, Xie Y, Yin C, Li J, Wang Z, Zhong H. Identification of snps associated with goose meat quality traits using a genome-wide association study approach. Animals. 2023;13(13):2089.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lisch D. How important are transposons for plant evolution? Nat Rev Genet. 2013;14(1):49–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Kapusta A, Suh A. Evolution of bird genomes—a transposon’s-eye view. Ann N Y Acad Sci. 2017;1389(1):164–85.

    PubMed 

    Google Scholar
     

  • Li B-P, Kang N, Xu Z-X, Luo H-R, Fan S-Y, Ao X-H, Li X, Han Y-P, Ou X-B, Xu L-H. Transposable elements shape the landscape of heterozygous structural variation in a bird genome. Zool Res. 2025;46(1):75–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gázquez-Gutiérrez A, Witteveldt J, Heras SR, Macias S. Sensing of transposable elements by the antiviral innate immune system. RNA. 2021;27(7):735–52.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebrie A. Transposable elements as essential elements in the control of gene expression. Mob DNA. 2023;14(1):9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tenaillon MI, Hollister JD, Gaut BS. A triptych of the evolution of plant transposable elements. Trends Plant Sci. 2010;15(8):471–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017;18(5):292–308.

    CAS 
    PubMed 

    Google Scholar
     

  • Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18(2):71–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Pfaff AL, Singleton LM, Kõks S. Mechanisms of disease-associated SINE-VNTR-Alus. Exp Biol Med. 2022;247(9):756–64.

    CAS 

    Google Scholar
     

  • Pfaff AL, Bubb VJ, Quinn JP, Koks S. Reference SVA insertion polymorphisms are associated with Parkinson’s Disease progression and differential gene expression. NPJ Parkinson’s Dis. 2021;7(1):44.

    CAS 

    Google Scholar
     

  • Vendrell-Mir P, Leduque B, Quadrana L. Ultra-sensitive detection of transposon insertions across multiple families by transposable element display sequencing. Genome Biol. 2025;26(1):48.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akakpo R, Carpentier MC, Ie Hsing Y, Panaud O. The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol. 2020;226(1):44–9.

    PubMed 

    Google Scholar
     

  • Gao G, Zhang H, Ni J, Zhao X, Zhang K, Wang J, Kong X, Wang Q. Insights into genetic diversity and phenotypic variations in domestic geese through comprehensive population and pan-genome analysis. J Animal Sci Biotechnol. 2023;14(1):150.

    CAS 

    Google Scholar
     

  • Li Y, Gao G, Lin Y, Hu S, Luo Y, Wang G, Jin L, Wang Q, Wang J, Tang Q, et al. Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome. Gigascience. 2020;9(10):giaa114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ou S, Su W, Liao Y, Chougule K, Agda JR, Hellinga AJ, Lugo CSB, Elliott TA, Ware D, Peterson T. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20:1–18.


    Google Scholar
     

  • Derrien T, Estellé J, Marco Sola S, Knowles DG, Raineri E, Guigó R, Ribeca P. Fast computation and applications of genome mappability. PLoS ONE. 2012;7(1): e30377.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.

    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012;16(5):284–7.

    CAS 

    Google Scholar
     

  • Gao G, Zhang H, Ni J, Zhao X, Zhang K, Wang J, Kong X, Wang Q. Insights into genetic diversity and phenotypic variations in domestic geese through comprehensive population and pan-genome analysis. J Anim Sci Biotechnol. 2023;14(1):1–20.


    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics. 2011;88(1):76–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pickrell J, Pritchard J. Inference of population splits and mixtures from genome-wide allele frequency data. Nat Preced. 2012;1(1).

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42(4):348–54.

    PubMed 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

    CAS 
    PubMed 

    Google Scholar
     

  • Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart T, Eichten SR, Cahn J, Karpievitch YV, Borevitz JO, Lister R. Population scale mapping of transposable element diversity reveals links to gene regulation and epigenomic variation. Elife. 2016;5: e20777.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet. 2019;51(6):1052–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J. 2009;57(3):413–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011;43(11):1160–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature. 1997;386(6624):485–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Domínguez M, Dugas E, Benchouaia M, Leduque B, Jiménez-Gómez JM, Colot V, Quadrana L. The impact of transposable elements on tomato diversity. Nat Commun. 2020;11(1):4058.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Della Coletta R, Qiu Y, Ou S, Hufford MB, Hirsch CN. How the pan-genome is changing crop genomics and improvement. Genome Biol. 2021;22:1–19.


    Google Scholar
     

  • Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell. 2020;182(1):145-161.e123.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castanera R, Vendrell-Mir P, Bardil A, Carpentier MC, Panaud O, Casacuberta JM. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability. Plant J. 2021;107(1):118–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan H, Haak DC, Li S, Huang L, Bombarely A. Exploring transposable element-based markers to identify allelic variations underlying agronomic traits in rice. Plant Commun. 2022;3(3):100321.

  • Priyanka PP, Yenugu S. Coiled-coil domain-containing (CCDC) proteins: functional roles in general and male reproductive physiology. Reprod Sci. 2021;28(10):2725–34.

    PubMed 

    Google Scholar
     

  • Kobayashi S, Fukuhara A, Otsuki M, Suganami T, Ogawa Y, Morii E, Shimomura I. Fat/vessel-derived secretory protein (Favine)/CCDC3 is involved in lipid accumulation. J Biol Chem. 2015;290(12):7443–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao W, Liu H, Zhang Y, Jung JH, Chen J, Su X, Kim YC, Flores ER, Wang SM, Czarny-Ratajczak M. Ccdc3: a new P63 target involved in regulation of liver lipid metabolism. Sci Rep. 2017;7(1):9020.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D. Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics. 2017;12(3):226–37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macko-Podgórni A, Stelmach K, Kwolek K, Grzebelus D. Stowaway miniature inverted repeat transposable elements are important agents driving recent genomic diversity in wild and cultivated carrot. Mob DNA. 2019;10:1–17.


    Google Scholar
     

  • Hughes LS, Fröhlich A, Pfaff AL, Bubb VJ, Quinn JP, Kõks S. Exploring SVA insertion polymorphisms in shaping differential gene expressions in the central nervous system. Biomolecules. 2024;14(3):358.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulski JK, Pfaff AL, Koks S. SVA regulation of transposable element clustered transcription within the major histocompatibility complex genomic class II region of the Parkinson’s progression markers initiative. Genes. 2024;15(9):1185.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koks S, Pfaff AL, Bubb VJ, Quinn JP. Expression quantitative trait loci (eQTLs) associated with retrotransposons demonstrate their modulatory effect on the transcriptome. Int J Mol Sci. 2021;22(12):6319.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fröhlich A, Pfaff AL, Middlehurst B, Hughes LS, Bubb VJ, Quinn JP, Koks S. Deciphering the role of a SINE-VNTR-Alu retrotransposon polymorphism as a biomarker of Parkinson’s disease progression. Sci Rep. 2024;14(1):10932.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang X, Dorajoo R, Sun Y, Han Y, Wang L, Khor C-C, Sim X, Tai E-S, Liu J, Yuan J-M. Gene-diet interaction effects on BMI levels in the Singapore Chinese population. Nutr J. 2018;17:1–11.

    CAS 

    Google Scholar
     

  • Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev. 2024;43(2):673–708.

    CAS 
    PubMed 

    Google Scholar
     

  • Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol. 2023;19(2):102–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Gonnella F, Konstantinidou F, Di Berardino C, Capacchietti G, Peserico A, Russo V, Barboni B, Stuppia L, Gatta V. A systematic review of the effects of high-fat diet exposure on oocyte and follicular quality: a molecular point of view. Int J Mol Sci. 2022;23(16):8890.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol. 2019;28(6):1537–49.

    PubMed 

    Google Scholar
     

  • Catlin NS, Josephs EB. The important contribution of transposable elements to phenotypic variation and evolution. Curr Opin Plant Biol. 2022;65: 102140.

    CAS 
    PubMed 

    Google Scholar
     

  • Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of transposable elements in genome stability: implications for health and disease. Int J Mol Sci. 2022;23(14):7802.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Shi X, Shi Y, Wang Z. The signaling pathways involved in ovarian follicle development. Front Physiol. 2021;12: 730196.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao G, Hu S, Zhang K, Wang H, Xie Y, Zhang C, Wu R, Zhao X, Zhang H, Wang Q. Genome-wide gene expression profiles reveal distinct molecular characteristics of the goose granulosa cells. Front Genet. 2021;12: 786287.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssen JA. New insights into the role of insulin and hypothalamic-pituitary-adrenal (HPA) axis in the metabolic syndrome. Int J Mol Sci. 2022;23(15):8178.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karaca Z, Grossman A, Kelestimur F. Investigation of the Hypothalamo-pituitary-adrenal (HPA) axis: a contemporary synthesis. Rev Endocr Metab Disord. 2021;22:179–204.

    PubMed 

    Google Scholar