• Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Aghaee Rad, H. et al. Scaling and networking a modular photonic quantum computer. Nature 638, 912–919 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).

    Article 
    ADS 

    Google Scholar
     

  • O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199–202 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Satzinger, K. J. et al. Quantum control of surface acoustic-wave phonons. Nature 563, 661–665 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Qiao, H. et al. Splitting phonons: building a platform for linear mechanical quantum computing. Science 380, 1030–1033 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fu, W. et al. Phononic integrated circuitry and spin–orbit interaction of phonons. Nat. Commun. 10, 2743 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kuzyk, M. C. & Wang, H. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X 8, 041027 (2018).


    Google Scholar
     

  • Taylor, J. C., Chatterjee, E., Kindel, W. F., Soh, D. & Eichenfield, M. Reconfigurable quantum phononic circuits via piezo-acoustomechanical interactions. npj Quantum Inf. 8, 19 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chu, Y. et al. Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator. Nature 563, 666–670 (2018).

    Article 
    ADS 

    Google Scholar
     

  • MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zivari, A., Stockill, R., Fiaschi, N. & Gröblacher, S. Non-classical mechanical states guided in a phononic waveguide. Nat. Phys. 18, 789–793 (2022).

    Article 

    Google Scholar
     

  • Bozkurt, A. et al. A quantum electromechanical interface for long-lived phonons. Nat. Phys. 19, 1326–1332 (2023).

    Article 

    Google Scholar
     

  • Bozkurt, A. B., Golami, O., Yu, Y., Tian, H. & Mirhosseini, M. A mechanical quantum memory for microwave photons. Nat. Phys. https://doi.org/10.1038/s41567-025-02975-w (2025).

  • Hitchcock, O. A. et al. Correlated dephasing in a piezoelectrically transduced silicon phononic waveguide. Preprint at https://arxiv.org/abs/2502.16426 (2025).

  • Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article 

    Google Scholar
     

  • Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).

    Article 

    Google Scholar
     

  • Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Arnold, G. et al. Converting microwave and telecom photons with a silicon photonic nanomechanical interface. Nat. Commun. 11, 4460 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing. Nat. Nanotechnol. 19, 166–172 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hann, C. T. et al. Hardware-efficient quantum random access memory with hybrid quantum acoustic systems. Phys. Rev. Lett. 123, 250501 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

    Article 

    Google Scholar
     

  • Chamberland, C. et al. Building a fault-tolerant quantum computer using concatenated cat codes. PRX Quantum 3, 010329 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wollack, E. A. et al. Quantum state preparation and tomography of entangled mechanical resonators. Nature 604, 463–467 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chou, M.-H. et al. Deterministic multi-phonon entanglement between two mechanical resonators on separate substrates. Nat. Commun. 16, 1450 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Gustafsson, M. V. et al. Propagating phonons coupled to an artificial atom. Science 346, 207–211 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bienfait, A. et al. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 364, 368–371 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dumur, É. et al. Quantum communication with itinerant surface acoustic wave phonons. npj Quantum Inf. 7, 173 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for cmos-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010).


    Google Scholar
     

  • Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kono, S., Koshino, K., Tabuchi, Y., Noguchi, A. & Nakamura, Y. Quantum non-demolition detection of an itinerant microwave photon. Nat. Phys. 14, 546–549 (2018).

    Article 

    Google Scholar
     

  • Besse, J.-C. et al. Single-shot quantum nondemolition detection of individual itinerant microwave photons. Phys. Rev. X 8, 021003 (2018).


    Google Scholar
     

  • Zhang, J. et al. Broadband tunable phase shifter for microwaves. AIP Adv. 10, 065128 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y. et al. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett. 113, 220502 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ekström, M. K. et al. Surface acoustic wave unidirectional transducers for quantum applications. Appl. Phys. Lett. 110, 073105 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Lund, M. M., Yang, F. & Mølmer, K. Perfect splitting of a two-photon pulse. Phys. Rev. A 107, 023715 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Beaudoin, F., da Silva, M. P., Dutton, Z. & Blais, A. First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A 86, 022305 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ferreira, V. S., Kim, G., Butler, A., Pichler, H. & Painter, O. Deterministic generation of multidimensional photonic cluster states with a single quantum emitter. Nat. Phys. 20, 865–870 (2024).

    Article 

    Google Scholar
     

  • Wang, Z., Qiao, H., Cleland, A. N. & Jiang, L. Quantum random access memory with transmon-controlled phonon routing. Phys. Rev. Lett. 134, 210601 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Lemonde, M.-A. et al. Phonon networks with silicon-vacancy centers in diamond waveguides. Phys. Rev. Lett. 120, 213603 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Safavi-Naeini, A. H., Van Thourhout, D., Baets, R. & Van Laer, R. Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica 6, 213–232 (2019).


    Google Scholar
     

  • Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, W. et al. Scalable and programmable phononic network with trapped ions. Nat. Phys. 19, 877–883 (2023).

    Article 

    Google Scholar
     

  • Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Bialczak, R. C. et al. Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409–413 (2010).

    Article 

    Google Scholar