• Hyman, S. E. Can neuroscience be integrated into the DSM-V? Nat. Rev. Neurosci. 8, 725–732 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brainstorm, C. et al. Analysis of shared heritability in common disorders of the brain. Science 360, eaap8757 (2018).

    Article 

    Google Scholar
     

  • Mallard, T. T. et al. Multivariate GWAS of psychiatric disorders and their cardinal symptoms reveal two dimensions of cross-cutting genetic liabilities. Cell Genom. 2, 100140 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smoller, J. W. et al. Psychiatric genetics and the structure of psychopathology. Mol. Psychiatry 24, 409–420 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Romero, C. et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat. Genet. 54, 1795–1802 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, P. M. et al. The enhancing neuroimaging genetics through meta-analysis consortium: 10 years of global collaborations in human brain mapping. Hum. Brain Mapp. 43, 15–22 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hoogman, M. et al. Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: the ENIGMA adventure. Hum. Brain Mapp. 43, 37–55 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ching, C. R. et al. What we learn about bipolar disorder from large‐scale neuroimaging: findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum. Brain Mapp. 43, 56–82 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bas-Hoogendam, J. M. et al. ENIGMA-anxiety working group: rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum. Brain Mapp. 43, 83–112 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Mol. Psychiatry 26, 4331–4343 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • van Erp, T. G. M. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. Biol. Psychiatry 84, 644–654 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, M. E., Hulshoff Pol, H. & Gogtay, N. A family affair: brain abnormalities in siblings of patients with schizophrenia. Brain 136, 3215–3226 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDonald, C. et al. Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives. Am. J. Psychiatry 163, 478–487 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Carballedo, A. et al. Early life adversity is associated with brain changes in subjects at family risk for depression. World J. Biol. Psychiatry 13, 569–578 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Stauffer, E.-M. et al. Grey and white matter microstructure is associated with polygenic risk for schizophrenia. Mol. Psychiatry 26, 7709–7718 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maglanoc, L. A. et al. Brain connectome mapping of complex human traits and their polygenic architecture using machine learning. Biol. Psychiatry 87, 717–726 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kirschner, M. et al. Schizophrenia polygenic risk during typical development reflects multiscale cortical organization. Biol. Psychiatry Glob. Open Sci. 3, 1083–1093 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 51, 1637–1644 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warrier, V. et al. Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes. Nat. Genet. 55, 1483–1493 (2023).

  • Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, P. F., Daly, M. J. & O’Donovan, M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chambers, J. C. et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43, 1131–1138 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schizophrenia Psychiatric Genome-Wide Association Study, C. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

    Article 

    Google Scholar
     

  • Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. W., Mak, T. S. & O’Reilly, P. F. Tutorial: a guide to performing polygenic risk score analyses. Nat. Protoc. 15, 2759–2772 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software. Bioinformatics 31, 1466–1468 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Alnaes, D. et al. Brain heterogeneity in schizophrenia and its association with polygenic risk. JAMA Psychiatry 76, 739–748 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doan, N. T. et al. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. Neuroimage Clin. 15, 719–731 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am. J. Hum. Genet. 92, 197–209 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andreassen, O. A., Thompson, W. K. & Dale, A. M. Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr. Bull. 40, 13–17 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 9, e1003455 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeland, O. B. et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum. Genet. 139, 85–94 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bahrami, S. et al. Shared genetic loci between body mass index and major psychiatric disorders: a genome-wide association study. JAMA Psychiatry 77, 503–512 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yokoyama, J. S. et al. Association between genetic traits for immune-mediated diseases and Alzheimer disease. JAMA Neurol. 73, 691–697 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 23, 809–818 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1485 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793–803 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein, M. B. et al. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat. Genet. 53, 174–184 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Marin, L. M. et al. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat. Genet. 56, 2333–2344 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, D. J. The harmonic mean p-value for combining dependent tests. Proc. Natl Acad. Sci. USA 116, 1195–1200 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Cabezas, M. A., Zikopoulos, B. & Barbas, H. The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct. Funct. 224, 985–1008 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilgetag, C. C., Beul, S. F., van Albada, S. J. & Goulas, A. An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw. Neurosci. 3, 905–923 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sydnor, V. J. et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hilgetag, C. C. & Goulas, A. ‘Hierarchy’ in the organization of brain networks. Philos. Trans. R. Soc. Lond. B 375, 20190319 (2020).

    Article 

    Google Scholar
     

  • Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Di Biase, M. A. et al. Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia. Mol. Psychiatry 27, 2052–2060 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Rivero, O. et al. Haploinsufficiency of the attention-deficit/hyperactivity disorder risk gene St3gal3 in mice causes alterations in cognition and expression of genes involved in myelination and sialylation. Front. Genet. 12, 688488 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, T. J. L., Jeon, B. T., Lee, H. & Kim, W. Y. Dendritic spine and synapse pathology in chromatin modifier-associated autism spectrum disorders and intellectual disability. Front. Mol. Neurosci. 15, 1048713 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira, M. A. et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon, S. et al. Usp9X controls ankyrin-repeat domain protein homeostasis during dendritic spine development. Neuron 105, 506–521 e507 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl. Neurodegener. 11, 39 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudre, G. et al. Mapping the cortico-striatal transcriptome in attention deficit hyperactivity disorder. Mol. Psychiatry 28, 792–800 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaffe, A. E. et al. Decoding shared versus divergent transcriptomic signatures across cortico-amygdala circuitry in PTSD and depressive disorders. Am. J. Psychiatry 179, 673–686 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willis, C. et al. Gene expression differences associated with alcohol use disorder in human brain. Mol. Psychiatry https://doi.org/10.1038/s41380-024-02777-1 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaczkurkin, A. N. et al. Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths. Am J Psychiatry 176, 1000–1009 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Barack, D. L. & Krakauer, J. W. Two views on the cognitive brain. Nat. Rev. Neurosci. 22, 359–371 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bearden, C. E. & Freimer, N. B. Endophenotypes for psychiatric disorders: ready for primetime? Trends Genet. 22, 306–313 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E. & Walsh, C. A. Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. J. Comp. Neurol. 460, 266–279 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E. & Copp, A. J. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126, 2455–2462 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • den Hoed, J., Devaraju, K. & Fisher, S. E. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep. 22, e52803 (2021).

    Article 

    Google Scholar
     

  • French, C. A. et al. Differential effects of Foxp2 disruption in distinct motor circuits. Mol. Psychiatry 24, 447–462 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vargha-Khadem, F., Gadian, D. G., Copp, A. & Mishkin, M. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 6, 131–138 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Chand, G. B. et al. Two distinct neuroanatomical subtypes of schizophrenia revealed using machine learning. Brain 143, 1027–1038 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haruvi-Lamdan, N., Horesh, D. & Golan, O. PTSD and autism spectrum disorder: co-morbidity, gaps in research, and potential shared mechanisms. Psychol. Trauma 10, 290–299 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Van Rooij, D. et al. Cortical and subcortical brain morphometry differences between patients with autism spectrum disorder and healthy individuals across the lifespan: results from the ENIGMA ASD Working Group. Am. J. Psychiatry 175, 359–369 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sha, Z. et al. The genetic architecture of structural left-right asymmetry of the human brain. Nat. Hum. Behav. 5, 1226–1239 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Attwaters, M. Connecting noncoding variants to human traits. Nat. Rev. Genet. 24, 489 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17, 1418–1428 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article 

    Google Scholar
     

  • Nelson, C. E., Hersh, B. M. & Carroll, S. B. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol. 5, R25 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD. Nature 611, 532–539 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fusar-Poli, P. et al. Transdiagnostic psychiatry: a systematic review. World Psychiatry 18, 192–207 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plana-Ripoll, O. et al. Exploring comorbidity within mental disorders among a Danish national population. JAMA Psychiatry 76, 259–270 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merikangas, K. R. et al. Lifetime prevalence of mental disorders in U.S. adolescents: results from the National Comorbidity Survey Replication–Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 49, 980–989 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Obsessive Compulsive Disorder Foundation Genetics Collaborative & OCD Collaborative Genetics Association Studies. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol. Psychiatry 23, 1181–1188 (2018).

  • 1000 Genomes Project Consortium A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article 

    Google Scholar
     

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giusti-Rodríguez, P. et al. Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits. Preprint at bioRxiv https://doi.org/10.1101/406330 (2018).

  • Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roadmap Epigenomics Consortiumet al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 11597–11616 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasa, F. et al. Adolescent tuning of association cortex in human structural brain networks. Cereb. Cortex 28, 281–294 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Alexander-Bloch, A. F. et al. On testing for spatial correspondence between maps of human brain structure and function. Neuroimage 178, 540–551 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Alexander-Bloch, A., Raznahan, A., Bullmore, E. & Giedd, J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koskinen, M. K. & Hovatta, I. Genetic insights into the neurobiology of anxiety. Trends Neurosci. 46, 318–331 (2023).

    Article 
    PubMed 

    Google Scholar