• Lv, B. Q., Qian, T. & Ding, H. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93, 025002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ong, N. P. & Liang, S. Experimental signatures of the chiral anomaly in Dirac-Weyl semimetals. Nat. Rev. Phys. 3, 394–404 (2021).

    Article 

    Google Scholar
     

  • Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Schliemann, J., Loss, D. & Westervelt, R. M. Zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum wells. Phys. Rev. Lett. 94, 206801 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal. Phys. Rev. Lett. 100, 113903 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620–625 (2013).

    Article 

    Google Scholar
     

  • Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Polini, M., Guinea, F., Lewenstein, M., Manoharan, H. C. & Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 8, 625–633 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Song, D. et al. Controlled generation of pseudospin-mediated vortices in photonic graphene. 2D Mater. 2, 034007 (2015).

    Article 

    Google Scholar
     

  • Song, D. et al. Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun. 6, 6272 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nat. Phys. 7, 434–440 (2011).

    Article 

    Google Scholar
     

  • Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Duca, L. et al. An Aharonov-Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, T. et al. Bloch state tomography using Wilson lines. Science 352, 1094–1097 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Brown, C. D. et al. Direct geometric probe of singularities in band structure. Science 377, 1319–1322 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Fläschner, N. et al. Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 1091–1094 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Weinberg, M., Staarmann, C., Ölschläger, C., Simonet, J. & Sengstock, K. Breaking inversion symmetry in a state-dependent honeycomb lattice: artificial graphene with tunable band gap. 2D Mater. 3, 024005 (2016).

    Article 

    Google Scholar
     

  • Tarnowski, M. et al. Observation of topological Bloch-state defects and their merging transition. Phys. Rev. Lett. 118, 240403 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fläschner, N. et al. Observation of dynamical vortices after quenches in a system with topology. Nat. Phys. 14, 265–268 (2018).

    Article 

    Google Scholar
     

  • Tarnowski, M. et al. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun. 10, 1728 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wen, K. et al. Experimental study of tune-out wavelengths for spin-dependent optical lattice in 87Rb Bose–Einstein condensation. J. Opt. Soc. Am. B 38, 3269–3276 (2021).

  • Juzeliūnas, G., Ruseckas, J. & Dalibard, J. Generalized Rashba-Dresselhaus spin-orbit coupling for cold atoms. Phys. Rev. A 81, 053403 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Campbell, D. L., Juzeliūnas, G. & Spielman, I. B. Realistic Rashba and Dresselhaus spin-orbit coupling for neutral atoms. Phys. Rev. A 84, 025602 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Huang, L. et al. Experimental realization of two-dimensional synthetic spin-orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016).

    Article 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Meng, Z. et al. Atomic Bose–Einstein condensate in twisted-bilayer optical lattices. Nature 615, 231–236 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Julku, A., Bruun, G. M. & Törmä, P. Quantum geometry and flat band Bose-Einstein condensate. Phys. Rev. Lett. 127, 170404 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lukin, I., Sotnikov, A. & Kruchkov, A. Unconventional superfluidity and quantum geometry of topological bosons. Preprint at https://arxiv.org/abs/2307.08748 (2023).

  • Gerbier, F. et al. Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005).

    Article 
    ADS 

    Google Scholar