• Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, C. J. et al. Pathogens and planetary change. Nat. Rev. Biodivers. 1, 32–49 (2025).

    Article 

    Google Scholar
     

  • Gibb, R., Franklinos, L. H. V., Redding, D. W. & Jones, K. E. Ecosystem perspectives are needed to manage zoonotic risks in a changing climate. BMJ 371, m3389 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, Y. et al. The global distribution and diversity of wild-bird-associated pathogens: an integrated data analysis and modeling study. Med 6, 100553 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).

    Article 

    Google Scholar
     

  • Keesing, F. & Ostfeld, R. S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl Acad. Sci. USA 118, e2023540118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, H., Ecke, F., Evander, M., Magnusson, M. & Hörnfeldt, B. Declining ecosystem health and the dilution effect. Sci. Rep. 6, 31314 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. X. G. et al. The impact of wildlife and environmental factors on hantavirus infection in the host and its translation into human risk. Proc. R. Soc. B 290, 20222470 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tersago, K. et al. Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence. Vector-Borne Zoonotic Dis. 8, 235–244 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clay, C. A., Lehmer, E. M., Jeor, S. S. & Dearing, M. D. Sin Nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses. PLoS ONE 4, e6467 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil, H., Ecke, F., Evander, M. & Hörnfeldt, B. Selective predation on hantavirus-infected voles by owls and confounding effects from landscape properties. Oecologia 181, 597–606 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ecke, F. et al. Selective predation by owls on infected bank voles (Myodes glareolus) as a possible sentinel of tularemia outbreaks. Vector-Borne Zoonotic Dis. 20, 630–632 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Mahon, M. B. et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 629, 830–836 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barouki, R. et al. The COVID-19 pandemic and global environmental change: emerging research needs. Environ. Int. 146, 106272 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ecke, F. et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat. Commun. 13, 7532 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl Acad. Sci. USA 112, 8667–8671 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wood, C. L., McInturff, A., Young, H. S., Kim, D. & Lafferty, K. D. Human infectious disease burdens decrease with urbanization but not with biodiversity. Phil. Trans R Soc. B 372, 20160122 (2017).

  • Magnusson, M., Fischhoff, I. R., Ecke, F., Hörnfeldt, B. & Ostfeld, R. S. Effect of spatial scale and latitude on diversity–disease relationships. Ecology 101, e02955 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Halliday, F. W., Rohr, J. R. & Laine, A. L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. 23, 1611–1622 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prist, P. R. et al. Promoting landscapes with a low zoonotic disease risk through forest restoration: the need for comprehensive guidelines. J. Appl. Ecol. 60, 1510–1521 (2023).

    Article 

    Google Scholar
     

  • Breed, M. F. et al. Ecosystem restoration: a public health intervention. EcoHealth 18, 269–271 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Reaser, J. K., Witt, A., Tabor, G. M., Hudson, P. J. & Plowright, R. K. Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor. Ecol. 29, e13357 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • European Commission: Directorate-General for Environment Nature Restoration Law – For People, Climate, and Planet (Publications Office of the European Union, 2022).

  • Reaser, J. K. et al. Fostering landscape immunity to protect human health: a science-based rationale for shifting conservation policy paradigms. Conserv. Lett. 15, e12869 (2022).

    Article 

    Google Scholar
     

  • Daszak, P. et al. (eds) Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2020).

  • Hopkins, S. R. et al. Evidence gaps and diversity among potential win–win solutions for conservation and human infectious disease control. Lancet Planet. Health 6, e694–e705 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plowright, R. K. et al. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat. Commun. 15, 2577 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IPCC in Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • Lindgren, E., Andersson, Y., Suk, J. E., Sudre, B. & Semenza, J. C. Monitoring EU emerging infectious disease risk due to climate change. Science 336, 418–419 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monaghan, A. J., Moore, S. M., Sampson, K. M., Beard, C. B. & Eisen, R. J. Climate change influences on the annual onset of Lyme disease in the United States. Ticks Tick-Borne Dis. 6, 615–622 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenza, J. C. & Paz, S. Climate change and infectious disease in Europe: impact, projection and adaptation. Lancet Reg. Health Eur. 9, 100230 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenza, J. C. & Ko, A. I. Waterborne diseases that are sensitive to climate variability and climate change. N. Engl. J. Med. 389, 2175–2187 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfenning-Butterworth, A. et al. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet. Health 8, e270–e283 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • UNEP. UN Decade of Ecosystem Restoration: 10 Flagship Initiatives Boosting Nature and Livelihoods Around the World. unep.org https://www.unep.org/interactive/flagship-initiatives-boosting-nature-livelihoods/#5 (2023).

  • African Parks. Rewilding 2,000 Rhino. africanparks.org https://www.africanparks.org/campaign/rewilding-2000-rhino (accessed 1 October 2024).

  • UNDP. UNDP Green Aral Sea Initiative – Planting a Forest on the Aral Seabed. undp.org https://www.undp.org/uzbekistan/press-releases/green-aral-sea-initiative-planting-forest-aral-seabed (2020).

  • National Geographic. The Great Green Wall. National Geographic https://education.nationalgeographic.org/resource/great-green-wall/ (accessed 1 October 2024).

  • UNEP. Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (UN Environment Programme, 2021).

  • Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

  • One Health High-Level Expert Panel et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022).

  • Rohr, J. R. et al. A planetary health innovation for disease, food and water challenges in Africa. Nature 619, 782–787 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • European Environment Agency. The Importance of Restoring Nature in Europe Briefing No. 09/2023. eea.europa.eu https://doi.org/10.2800/269094 (2023).

  • Lepori, F., Palm, D. & Malmqvist, B. Effects of a stream restoration on ecosystem functioning: detritus retentiveness and decomposition. J. Appl. Ecol. 42, 228–238 (2005).

    Article 

    Google Scholar
     

  • Hering, D. et al. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J. Appl. Ecol. 52, 1518–1527 (2015).

    Article 

    Google Scholar
     

  • Collins, S. L., Knapp, A. K., Briggs, J. M. B., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ecke, F., Nematollahi Mahani, S. A., Evander, M., Hörnfeldt, B. & Khalil, H. Wildfire-induced short-term changes in a small mammal community increase prevalence of a zoonotic pathogen? Ecol. Evol. 9, 12459–12470 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S. & Jones, E. B. D. Stream biodiversity: the ghost of land use past. Proc. Natl Acad. Sci. USA 95, 14843–14847 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).

  • Halley, D. J., Saveljev, A. P. & Rosell, F. Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev. 51, 1–24 (2021).

    Article 

    Google Scholar
     

  • Awasthi, B., McConkey, K. R., Aluthwattha, S. T., Chen, C. & Chen, J. Restoring ecological function: interactions between vertebrates and latrines in a reintroduced population of Rhinoceros unicornis. Biol. Conserv. 294, 110611 (2024).

    Article 

    Google Scholar
     

  • Delibes-Mateos, M., Glikman, J. A., Lafuente, R., Villafuerte, R. & Garrido, F. E. Support to Iberian lynx reintroduction and perceived impacts: assessments before and after reintroduction. Conserv. Sci. Pract. 4, e605 (2022).

    Article 

    Google Scholar
     

  • Devineau, O. et al. Evaluating the Canada lynx reintroduction programme in Colorado: patterns in mortality. J. Appl. Ecol. 47, 524–531 (2010).

    Article 

    Google Scholar
     

  • Johnsingh, A. & Madhusudan, M. in Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 146–163 (Blackwell, 2009).

  • Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assessment. Oryx 41, 205–214 (2007).

    Article 

    Google Scholar
     

  • Parsons, M. A. et al. Habitat selection and spatiotemporal interactions of a reintroduced mesocarnivore. J. Wildl. Manag. 83, 1172–1184 (2019).

    Article 

    Google Scholar
     

  • Landa, A. et al. Conservation of the endangered Arctic fox in Norway – are successful reintroductions enough? Biol. Conserv. 275, 109774 (2022).

    Article 

    Google Scholar
     

  • Gouar, P. L. et al. Roles of survival and dispersal in reintroduction success of griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859–872 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Dzialak, M. R., Lacki, M. J. & Vorisek, S. Survival, mortality, and morbidity among peregrine falcons reintroduced in Kentucky. J. Raptor Res. 41, 61–65 (2007).

    Article 

    Google Scholar
     

  • Green, R. E., Pienkowski, M. W. & Love, J. A. Long-term viability of the re-introduced population of the white-tailed eagle Haliaeetus albicilla in Scotland. J. Appl. Ecol. 33, 357–368 (1996).

    Article 

    Google Scholar
     

  • Leupin, E. E. & Low, D. J. Burrowing owl reintroduction efforts in the Thompson–Nicola region of British Columbia. J. Raptor Res. 35, 19 (2001).


    Google Scholar
     

  • Mitchell, A. M., Wellicome, T. I., Brodie, D. & Cheng, K. M. Captive-reared burrowing owls show higher site-affinity, survival, and reproductive performance when reintroduced using a soft-release. Biol. Conserv. 144, 1382–1391 (2011).

    Article 

    Google Scholar
     

  • Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).

    Article 

    Google Scholar
     

  • Stier, A. C. et al. Ecosystem context and historical contingency in apex predator recoveries. Sci. Adv. 2, e1501769 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hörnfeldt, B., Carlsson, B. G., Löfgren, O. & Eklund, U. Effects of cyclic food supply on breeding performance in Tengmalm’s owl. Can. J. Zool. 68, 522–530 (1990).

    Article 

    Google Scholar
     

  • Lapshin, A. S., Andreychev, A. V., Alpeev, M. A. & Kuznetsov, V. A. Breeding success of the Eurasian eagle owl (Bubo bubo, Strigiformes, Strigidae) in artificial nests. Biol. Bull. 50, 1486–1492 (2023).

    Article 

    Google Scholar
     

  • Zagorski, M. E. & Swihart, R. K. Killing time in cover crops? Artificial perches promote field use by raptors. Ann. Appl. Biol. 177, 358–366 (2020).

    Article 

    Google Scholar
     

  • Kay, B., Twigg, L., Korn, T. & Nicol, H. The use of artifical perches to increase predation on house mice (Mus domesticus) by raptors. Wildl. Res. 21, 95–105 (1994).

    Article 

    Google Scholar
     

  • Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crawford, R. D. & O’Keefe, J. M. Improving the science and practice of using artificial roosts for bats. Conserv. Biol. 38, e14170 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Frank, E. G. The economic impacts of ecosystem disruptions: costs from substituting biological pest control. Science 385, eadg0344 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, M. C. et al. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 11, e71503 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowatte, G., Perera, P., Senevirathne, G., Meegaskumbura, S. & Meegaskumbura, M. Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol. Control 67, 469–474 (2013).

    Article 

    Google Scholar
     

  • Fischhoff, I. R., Burtis, J. C., Keesing, F. & Ostfeld, R. S. Tritrophic interactions between a fungal pathogen, a spider predator, and the blacklegged tick. Ecol. Evol. 8, 7824–7834 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bentley, M. D. & Day, J. F. Chemical ecology and behavioral aspects of mosquito oviposition. Annu. Rev. Entomol. 34, 401–421 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gliwicz, J. & Glowacka, B. Differential responses of Clethrionomys species to forest disturbance in Europe and North America. Can. J. Zool. 78, 1340–1348 (2000).

    Article 

    Google Scholar
     

  • Morgan Ernest, S. K. & Brown, J. H. Delayed compensation for missing keystone species by colonization. Science 292, 101–104 (2001).

    Article 

    Google Scholar
     

  • Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).

    Article 

    Google Scholar
     

  • Staats, E. G., Agosta, S. J. & Vonesh, J. R. Predator diversity reduces habitat colonization by mosquitoes and midges. Biol. Lett. 12, 20160580 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartley, M. & Sainsbury, A. Methods of disease risk analysis in wildlife translocations for conservation purposes. Ecohealth 14, 16–29 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Magnusson, M. et al. Spatial and temporal variation of hantavirus bank vole infection in managed forest landscapes. Ecosphere 6, art163 (2015).

    Article 

    Google Scholar
     

  • Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocklöv, J. et al. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. Lancet Reg. Health Europe 32, 100701 (2023).

  • Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • European Environment Agency. Water Resources Across Europe – Confronting Water Stress: An Updated Assessment (Publications Office of the European Union, 2021).

  • Levesque, K. & Hamann, A. Identifying western North American tree populations vulnerable to drought under observed and projected climate change. Climate 10, 114 (2022).

    Article 

    Google Scholar
     

  • Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339, 814–815 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oaks, J. L. et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427, 630–633 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stokstad, E. Vultures face new toxic threat. Science 373, 1187 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stone, E. L., Harris, S. & Jones, G. Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm. Biol. 80, 213–219 (2015).

    Article 

    Google Scholar
     

  • Gaddy, H. G. Using local knowledge in emerging infectious disease research. Soc. Sci. Med 258, 113107 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliday, J. E. B. et al. Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 357, 146–148 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vora, N. M. et al. Interventions to reduce risk for pathogen spillover and early disease spread to prevent outbreaks, epidemics, and pandemics. Emerg. Infect. Dis. 29, 1–9 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Elvander, M., Persson, B. & Lewerin, S. Historical cases of anthrax in Sweden 1916–1961. Transbound. Emerg. Dis. 64, 892–898 (2015).

  • Sjukdomsrapportering 2011: En Uppdatering av Regeringsrapporten 2006 SVA:s Rapportserie 23. sva.se https://www.sva.se/media/zpmpwfhm/sva-rapport-23-sjukdomsrapportering-2011.pdf (SVA, 2011).

  • Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2018).

    Article 

    Google Scholar
     

  • Santini, N. S. & Y, M. The restoration of degraded lands by local communities and Indigenous Peoples. Front. Conserv. Sci. 3, 873659 (2022).

    Article 

    Google Scholar
     

  • Ortega-Álvarez, R., Tobón, W., Urquiza-Haas, T., Ruiz-González, S. P. & Koleff, P. Exploring local perceptions, implementation, benefits, and limitations of community-based restoration projects in Mexico. Restor. Ecol. 30, e13604 (2022).

  • Meadows, A. J., Stephenson, N., Madhav, N. K. & Oppenheim, B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob. Health 8, e012026 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenza, J. C. Lateral public health: advancing systemic resilience to climate change. Lancet Reg. Health Eur. 9, 100231 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemmerling, S. A., Barra, M. & Bienn, H. C. Elevating local knowledge through participatory modeling: active community engagement in restoration planning in coastal Louisiana. J. Geogr. Syst. 22, 241–266 (2020).

    Article 

    Google Scholar
     

  • Davidson, G. et al. Forest restoration and the zoonotic vector Anopheles balabacensis in Sabah, Malaysia. EcoHealth 21, 21-37 (2024).

  • Allan, B. F. et al. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl Acad. Sci. USA 107, 18523–18527 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Understanding Your Risks: Identifying Hazards and Estimating Losses FEMA Publication 386-2 (Federal Emergency Management Agency, 2001).

  • UN Office for Disaster Risk Reduction. The Sendai Framework Terminology on Disaster Risk Reduction. undrr.org https://www.undrr.org/terminology (2017).

  • Environmental Indicators: Typology and Use in Reporting (European Environment Agency, 2003).