• Nitta JH, Schuettpelz E, Ramírez-Barahona S, Iwasaki W. An open and continuously updated fern tree of life. Front Plant Sci. 2022;13:909768.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali Z, Tan QW, Lim PK, Chen H, Pfeifer L, Julca I, et al. Comparative transcriptomics in ferns reveals key innovations and divergent evolution of secondary cell wall. Nat Plants. 2025;11:1025–48.


    Google Scholar
     

  • Schneider H, Schuetipelz E, Pryer KM, Cranfill R, Magallón S, Lupia R. Ferns diversified in the shadow of angiosperms. Nature. 2004;428:553–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Li FW, Brouwer P, Carretero-Paulet L, Cheng S, De Vries J, Delaux P-M, et al. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nat Plants. 2018;4:460–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahmatpour N, Kuo LY, Kang J, Herman E, Lei L, Li M, et al. Analyses of Marsilea vestita genome and transcriptomes do not support widespread intron retention during spermatogenesis. New Phytol. 2023;237:1490–4.

    PubMed 

    Google Scholar
     

  • Marchant DB, Chen G, Cai S, Chen F, Schafran P, Jenkins J, et al. Dynamic genome evolution in a model fern. Nat Plants. 2022;8:1038–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Y, Qin X, Liao Q, Du R, Luo X, Zhou Q, et al. The genome of homosporous maidenhair fern sheds light on the euphyllophyte evolution and defences. Nat Plants. 2022;8:1024–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong Y, Liu Y, Wu W, Chen J, Sun C, Liu H, et al. Genomic insights into genetic diploidization in the homosporous fern Adiantum nelumboides. Genome Biol Evol. 2022;14:evac127.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang X, Wang W, Gong T, Wickell D, Kuo LY, Zhang X, et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat Plants. 2022;8:500–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tryon RM. A sketch of the history of fern classification. Ann Mo Bot Gard. 1952;39:255–62.


    Google Scholar
     

  • Christenhusz MJM, Chase MW. Trends and concepts in fern classification. Ann Bot. 2014;113:571–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donoghue PCJ, Harrison CJ, Paps J, Schneider H. The evolutionary emergence of land plants. Curr Biol. 2021;31:R1281–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Antonovics J. Pathogenic fungi in ferns and angiosperms: a comparative study. Am Fern J. 2020;110:79–94.


    Google Scholar
     

  • Jones KA, Rayamajhi MB, Pratt PD, Van TK. First report of the pathogenicity of Colletotrichum gloeosporioides on invasive ferns, Lygodium microphyllum and L. japonicum, in Florida. Plant Dis. 2003;87:101–101.

    CAS 
    PubMed 

    Google Scholar
     

  • Mali AM, Patil VB, Pise NM, Ade AB. First report of leaf spot caused by Fusarium sp. NFCCI 2882 on Angiopteris evecta: a king fern from Western Ghats, India. Plant Dis. 2016;100:646.


    Google Scholar
     

  • Antonovics J. Fern family clade age and fungal pathogen diversity. Am Fern J. 2023;113:137–69.


    Google Scholar
     

  • Cannon PF, Damm U, Johnston PR, Weir BS. Colletotrichum: current status and future directions. Stud Mycol. 2012;73:181–213.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okungbowa FI, Shittu H. Fusarium wilt: an overview. Environmental Research Journal. 2012;6:83–102.


    Google Scholar
     

  • Panstruga R, Moscou MJ. What is the molecular basis of nonhost resistance? Mol Plant Microbe Interact. 2020;33:1253–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Dodds PN. From gene-for-gene to resistosomes: Flor’s enduring legacy. Mol Plant Microbe Interact. 2023;36:461–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Bender KW, Zipfel C. Paradigms of receptor kinase signaling in plants. Biochemical Journal. 2023;480:835–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep. 2023;24:e57495.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Zhang YM, Tang Y, Chen JQ, Shao ZQ. The evolution of plant NLR immune receptors and downstream signal components. Curr Opin Plant Biol. 2023;73:102363.

    CAS 
    PubMed 

    Google Scholar
     

  • Shao Z-Q, Xue J-Y, Wu P, Zhang Y-M, Wu Y, Hang Y-Y, et al. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol. 2016;170:2095–109.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castel B, El Mahboubi K, Jacquet C, Delaux P-M. Immunobiodiversity: conserved and specific immunity across land plants and beyond. Mol Plant. 2024;17:92–111.

    CAS 
    PubMed 

    Google Scholar
     

  • Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: from discovery to deployment. Cell. 2024;187:2095–116.

    CAS 
    PubMed 

    Google Scholar
     

  • Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell. 2022;34:1447–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dievart A, Gottin C, Peacuterin C, Ranwez V, Chantret N. Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol. 2020;71:131–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Furumizu C, Sawa S. Insight into early diversification of leucine-rich repeat receptor-like kinases provided by the sequenced moss and hornwort genomes. Plant Mol Biol. 2021;107:337–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Chia K-S, Kourelis J, Teulet A, Vickers M, Sakai T, Walker JF, et al. The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages. Plant Cell. 2024;36:2491–511.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumaelius L, Lahner B, Salt DE, Banks JA. Arsenic hyperaccumulation in gametophytes of Pteris vittata. a new model system for analysis of arsenic hyperaccumulation. Plant Physiol. 2004;136:3198–208.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plackett ARG, Rabbinowitsch EH, Langdale JA. Protocol: genetic transformation of the fern Ceratopteris richardii through microparticle bombardment. Plant Methods. 2015;11:37.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-336.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redkar A, Gimenez Ibanez S, Sabale M, Zechmann B, Solano R, Di Pietro A. Marchantia polymorpha model reveals conserved infection mechanisms in the vascular wilt fungal pathogen Fusarium oxysporum. New Phytol. 2021;234:227–41.

    PubMed 

    Google Scholar
     

  • Nelson JM, Hauser DA, Hinson R, Shaw AJ. A novel experimental system using the liverwort Marchantia polymorpha and its fungal endophytes reveals diverse and context-dependent effects. New Phytol. 2018;218:1217–32.

    CAS 
    PubMed 

    Google Scholar
     

  • Crouch J, O’Connell R, Gan P, Buiate E, Torres MF, Beirn L, et al. The genomics of Colletotrichum. In: Genomics of plant-associated fungi: monocot pathogens. Springer, Berlin, Heidelberg; 2014. p. 69–102.

  • Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé MT, et al. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. Mol Plant Microbe Interact. 2008;21:61–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Jaulneau V, Cazaux M, Hoi JWS, Fournier S, Esquerré-Tugayé MT, Jacquet C, et al. Host and nonhost resistance in Medicago-Colletotrichum interactions. Mol Plant Microbe Interact. 2010;23:1107–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Moussart A, Onfroy C, Lesne A, Esquibet M, Grenier E, Tivoli B. Host status and reaction of Medicago truncatula accessions to infection by three major pathogens of pea (Pisum sativum) and alfalfa (Medicago sativa). Eur J Plant Pathol. 2007;117:57–69.


    Google Scholar
     

  • Watkins JE, Mack MK, Mulkey SS. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. Am J Bot. 2007;94:701–8.

    PubMed 

    Google Scholar
     

  • Rose C, Damm U. Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany. Phytopathol Mediterr. 2024;63:155–78.

    CAS 

    Google Scholar
     

  • Johnson DA, Carris LM, Rogers JD. Morphological and molecular characterization of Colletotrichum nymphaeae and C. nupharicola sp. nov. on water-lilies (Nymphaea and Nuphar). Mycol Res. 1997;101:641–9.

    CAS 

    Google Scholar
     

  • Perfect SE, Green JR. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol. 2001;2:101–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Barragan AC, Weigel D. Plant NLR diversity : the known unknowns of Pan-NLRomes a brief history of plant NLRs. Plant Cell. 2020;33:814–31.


    Google Scholar
     

  • Rich MK, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science. 2021;372:864–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Montgomery SA, Tanizawa Y, Galik B, Wang N, Ito T, Mochizuki T, et al. Chromatin organization in early land plants reveals an ancestral association between H3K27me3, transposons, and constitutive heterochromatin. Curr Biol. 2020;30:573-588.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, et al. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant J. 2018;93:515–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, et al. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell. 2023;186:3558-3576.e17.

    CAS 
    PubMed 

    Google Scholar
     

  • Li C, Wickell D, Kuo L-Y, Chen X, Nie B, Liao X, et al. Extraordinary preservation of gene collinearity over three hundred million years revealed in homosporous lycophytes. Proc Natl Acad Sci. 2024;121:e2312607121.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui J, Zhu Y, Du H, Liu Z, Shen S, Wang T, et al. Chromosome-level reference genome of tetraploid Isoetes sinensis provides insights into evolution and adaption of lycophytes. Gigascience. 2022;12:giad079.

    PubMed 

    Google Scholar
     

  • Banks JA, Nishiyama T, Hasebe M, Bowman JL, Gribskov M, DePamphilis C, et al. The selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science. 2011;332:960–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, et al. The apostasia genome and the evolution of orchids. Nature. 2017;549:379–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, et al. The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res. 2007;35(suppl_1):D883-7.

    CAS 
    PubMed 

    Google Scholar
     

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol. 2012;30:555–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci U S A. 2018;115:E4151–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res. 2012;40:D1202–10.

    CAS 
    PubMed 

    Google Scholar
     

  • Pecrix Y, Staton SE, Sallet E, Lelandais-Brière C, Moreau S, Carrère S, et al. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants. 2018;4:1017–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Arias-Baldrich C, Silva MC, Bergeretti F, Chaves I, Miguel C, Saibo NJM, et al. CorkOakDB—the cork oak genome database portal. Database. 2020;2020:baaa114.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehti-Shiu MD, Zou C, Shiu S-H. Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/Pelle family. In: Receptor-like kinases in plants. 2012; https://doi.org/10.1007/978-3-642-23044-8_1
    .

  • Johanndrees O, Baggs EL, Uhlmann C, Locci F, Läßle HL, Melkonian K, et al. Variation in plant toll/interleukin-1 receptor domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. Plant Physiol. 2023;191:626–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Urbach JM, Ausubel FM. The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci. 2017;114:1063–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kourelis J, Sakai T, Adachi H, Kamoun S. Refplantnlr is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol. 2021;19:e3001124.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Teng Z, Li H, Wang W, Xu F, Sun K, et al. An activated form of NB-ARC protein RLS1 functions with cysteine-rich receptor-like protein RMC to trigger cell death in rice. Plant Commun. 2023;4:100459.

    CAS 
    PubMed 

    Google Scholar
     

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim H, Prokchorchik M, Sohn KH. Investigation of RIN4 natural variants reveals a motif crucial for function and provides an opportunity to broaden NLR regulation specificity. Plant J. 2022;110:58–70.

    CAS 
    PubMed 

    Google Scholar
     

  • Qin H, Cheng J, Han G-Z, Gong Z. Phylogenomic insights into the diversity and evolution of RPW8-NLRs and their partners in plants. Plant J. 2024;120:1032–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Ding P, Ding Y. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci. 2020;25:549–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Tsuda K, Truman W, Sato M, Nguyen LV, Katagiri F, et al. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 2011;67:1029–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Dong X. NPR1, all things considered. Curr Opin Plant Biol. 2004;7:547–52.

    CAS 
    PubMed 

    Google Scholar
     

  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Kulaeva O, Kliukova M, Afonin A, Sulima A, Zhukov V, Tikhonovich I. The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors. Biol Commun. 2020;65:187–99.


    Google Scholar
     

  • Zhu S. Evidence for myxobacterial origin of eukaryotic defensins. Immunogenetics. 2007;59:949–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Kirschner R, Lee PH, Huang Y-M. Diversity of fungi on Taiwanese fern plants: review and new discoveries. Taiwania. 2019;64:163–75.


    Google Scholar
     

  • Toome M, Ohm RA, Riley RW, James TY, Lazarus KL, Henrissat B, et al. Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. New Phytol. 2014;202:554–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Stevenson JA. Ferns and fungi. Am Fern J. 1945;35:97–104.


    Google Scholar
     

  • Kloepper JW, McInroy JA, Liu K, Hu CH. Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS ONE. 2013;8:e58531.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grenz K, Chia KS, Turley EK, Tyszka AS, Atkinson RE, Reeves J, et al. A necrotizing toxin enables Pseudomonas syringae infection across evolutionarily divergent plants. Cell Host Microbe. 2025;33:20-29.e5.

    CAS 
    PubMed 

    Google Scholar
     

  • Chase AR, Miller JW, Jones JB. Leaf spot and blight of Asplenium nidus caused by Pseudomonas gladioli. Plant Dis. 1984;68:344–7.


    Google Scholar
     

  • Sastry KS, Mandal B, Hammond J, Scott SW, Briddon RW. Encyclopedia of plant viruses and viroids. 2019.

  • Sharma M, Kulshrestha S. Colletotrichum gloeosporioides: an anthracnose causing pathogen of fruits and vegetables. Biosciences Biotechnologiy Research Asia. 2015;12:1233–46.


    Google Scholar
     

  • Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, et al. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3: Genes, Genomes, Genetics. 2021;11:jkab1175.


    Google Scholar
     

  • Brown JKM, Tellier A. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol. 2011;49:345–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Knowlton A. Equisetum. Curr Biol. 2012;22:R388–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Brune T, Haas K. Equisetum species show uniform epicuticular wax structures but diverse composition patterns. AoB Plants. 2011;11:plr009.


    Google Scholar
     

  • Yeganegi M, Tabatabaei Yazdi F, Mortazavi SA, Asili J, Alizadeh Behbahani B, Beigbabaei A. Equisetum telmateia extracts: chemical compositions, antioxidant activity and antimicrobial effect on the growth of some pathogenic strain causing poisoning and infection. Microb Pathog. 2018;116:62–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001;409:579.

    CAS 
    PubMed 

    Google Scholar
     

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE. A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol. 2006;141:1544–54.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez AE, Chiocchio V, Em LT, Rodriguez MA, Godeas AM. Mycorrhizal association in gametophytes and sporophytes of the fern Pteris vittata (Pteridaceae) with Glomus intraradices. Rev Biol Trop. 2012;60:857–65.

    PubMed 

    Google Scholar
     

  • Radhakrishnan GV, Keller J, Rich MK, Vernié T, Mbadinga Mbadinga DL, Vigneron N, et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat Plants. 2020;6:280–9.

    PubMed 

    Google Scholar
     

  • Watkins JE, Mack MC, Sinclair TR, Mulkey SS. Ecological and evolutionary consequences of desiccation tolerance in tropical fern gametophytes. New Phytol. 2007;176:708–17.

    PubMed 

    Google Scholar
     

  • Proctor MCF, Tuba Z. Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol. 2002;156:327–49.

    PubMed 

    Google Scholar
     

  • Farrar DR, Dassler C, Watkins JE, Skelton C. Gametophyte ecology. In: Ranker T, Haufler C, editors. Biology and evolution of ferns and lycophytes. Cambridge University Press; 2008. p. 222–56.


    Google Scholar
     

  • Krieg CP, Chambers SM. The ecology and physiology of fern gametophytes: a methodological synthesis. Appl Plant Sci. 2022;10:e11464.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tausz M, Hietz P, Briones O. The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. Aust J Plant Physiol. 2001;28:775–83.

    CAS 

    Google Scholar
     

  • Fernández-Marín B, Alfaro SJA, Becerril JM, García-Plazaola JI. Do fern gametophytes have the capacity for irradiance acclimation? Biol Plant. 2012;56:351–6.


    Google Scholar
     

  • Sato T, Sakai A. Freezing resistance of gametophytes of the temperate fern, Polystichum retroso-paleaceum. Can J Bot. 1980;58:1144–8.


    Google Scholar
     

  • DeMell A, Alvarado V, Scholthof HB. Molecular perspectives on age-related resistance of plants to (viral) pathogens. New Phytol. 2023;240:80–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Develey-Rivière MP, Galiana E. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol. 2007;175:405–16.

    PubMed 

    Google Scholar
     

  • Mitoi EM, Aldea F, Helepciuc FE, Ciocan AG, Frum A, Popescu DI, et al. The production of useful phenol compounds with antioxidant potential in gametophytes and sporophytes from in vitro cultures in four ornamental ferns species. Horticulturae. 2024;10:799.


    Google Scholar
     

  • Guha P, Mukhopadhyay R, Gupta K. Antifungal activity of the crude extracts and extracted phenols from gametophytes and sporophytes of two species of Adiantum. Taiwania. 2005;50:272–83.


    Google Scholar
     

  • San Francisco M, Cooper-Driver G. Anti-microbial activity of phenolic acids in Pteridium aquilinum. Am Fern J. 1984;74:87–96.


    Google Scholar
     

  • Page CN. Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol. 2002. https://doi.org/10.1016/S0034-6667(01)00127-0.

    Article 

    Google Scholar
     

  • Strullu-Derrien C, Goral T, Spencer ART, Kenrick P, Catherine Aime M, Gaya E, et al. A fungal plant pathogen discovered in the Devonian Rhynie chert. Nat Commun. 2023;14:7932.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upson JL, Zess EK, Białas A, Wu C-H, Kamoun S. The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Curr Opin Plant Biol. 2018;44:108–16.

    PubMed 

    Google Scholar
     

  • Delaux P-M, Schornack S. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science. 2021;371:eaba6605.

    CAS 
    PubMed 

    Google Scholar
     

  • Locci F, Wang J, Parker JE. TIR-domain enzymatic activities at the heart of plant immunity. Curr Opin Plant Biol. 2023;74:102373.

    CAS 
    PubMed 

    Google Scholar
     

  • Jeon HW, Iwakawa H, Naramoto S, Herrfurth C, Gutsche N, Schlüter T, et al. Contrasting and conserved roles of NPR pathways in diverged land plant lineages. New Phytol. 2024;243:2295–310.

    CAS 
    PubMed 

    Google Scholar
     

  • Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, et al. Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. Plant Cell. 2016;28:2603–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ngou BPM, Jones JDG, Ding P. Plant immune networks. Trends Plant Sci. 2022;27:255–73.

    CAS 
    PubMed 

    Google Scholar
     

  • van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. New Phytol. 2019;225:70–86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yotsui I, Matsui H, Miyauchi S, Iwakawa H, Melkonian K, Schlüter T, et al. LysM-mediated signaling in Marchantia polymorpha highlights the conservation of pattern-triggered immunity in land plants. Curr Biol. 2023;33:3732-3746.e8.

    CAS 
    PubMed 

    Google Scholar
     

  • Teyssier E, Grat S, Landry D, Ouradou M, Rich MK, Fort S, et al. A plant lysin motif receptor-like kinase plays an ancestral function in mycorrhiza. Proc Natl Acad Sci. 2025;122:e2426063122.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan Y, Mellüh J, Mecchia MA, Jeon H-W, Melkonian K, Holzberger C, et al. Conserved role of the SERK–BIR module in development and immunity across land plants. Current Biology. 2025;35:2202–2211.E7.

  • Dou R, Mahboubi K El, Tanney CAS, Chu J, Bredow M, Gallo MCR, et al. Conservation of an immune homeostasis module in land plants. bioRxiv. 2024; https://doi.org/10.1101/2024.10.01.616128.

  • Chu J, Monte I, DeFalco TA, Köster P, Derbyshire P, Menke FLH, et al. Conservation of the PBL-RBOH immune module in land plants. Curr Biol. 2023;33:1130-1137.e5.

    CAS 
    PubMed 

    Google Scholar
     

  • Adachi H, Kamoun S. NLR receptor networks in plants. Essays Biochem. 2022;66:541–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Goh FJ, Huang CY, Derevnina L, Wu CH. NRC immune receptor networks show diversified hierarchical genetic architecture across plant lineages. Plant Cell. 2024;36:3399–418.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu C-H, Derevnina L, Kamoun S. Receptor networks underpin plant immunity. Science. 2018;360:1300–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Feehan JM, Castel B, Bentham AR, Jones JDG. Plant NLRs get by with a little help from their friends. Curr Opin Plant Biol. 2020;56:99–108.

    CAS 
    PubMed 

    Google Scholar
     

  • Castel B, Ngou PM, Cevik V, Kim DS, Yang Y, Ding P, et al. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 2019;222:966–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Purdy LH. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology. 1979;69:875–80.


    Google Scholar
     

  • Gaulin E, Jacquet C, Bottin A, Dumas B. Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol. 2007;8:539–48.

    PubMed 

    Google Scholar
     

  • Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics. 2016;17:852.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.

  • Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar