• SEAFDEC. The Southeast Asian state of fisheries and aquaculture 2022. Southeast Asian Fisheries Development Center; 2022.

  • Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J. Antimicrobial resistance in aquaculture: occurrence and strategies in Southeast Asia. Sci Total Environ. 2024;907:167942. https://doi.org/10.1016/j.scitotenv.2023.167942.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • FAO, The State of World Fisheries and Aquaculture. 2020. Sustainability in Action, Rome, The State of World Fisheries and Aquaculture (2020).

  • Mursalim MF, Budiyansah H, Raharjo HM, Debnath PP, Sakulworakan R, Chokmangmeepisarn P, Yindee J, Piasomboon P, Elayaraja S, Rodkhum C. Diversity and antimicrobial susceptibility profiles of Aeromonas spp. Isolated from diseased freshwater fishes in Thailand. J Fish Dis. 2022;45(8):1149–63. https://doi.org/10.1111/jfd.13650.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DoF. Statistics of freshwater aquaculture production of Thailand. Thailand: Department of Fisheries, Ministry of Agriculture and Cooperatives; 2020.


    Google Scholar
     

  • Hedberg N, Stenson I, Nitz Pettersson M, Warshan D, Nguyen-Kim H, Tedengren M, Kautsky N. Antibiotic use in Vietnamese fish and Lobster sea cage farms; implications for coral reefs and human health. Aquaculture. 2018;495:366–75. https://doi.org/10.1016/j.aquaculture.2018.06.005.

    Article 
    CAS 

    Google Scholar
     

  • Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917–42. https://doi.org/10.1111/1462-2920.12134.

    Article 
    PubMed 

    Google Scholar
     

  • Chen X, Shao T, Long X. Evaluation of the effects of different stocking densities on the sediment microbial community of juvenile hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) in recirculating aquaculture systems. PLoS ONE. 2018;13(12). https://doi.org/10.1371/journal.pone.0208544.

  • Raharjo HM, Budiyansah H, Mursalim MF, Chokmangmeepisarn P, Sakulworakan R, Madyod S, Sewaka M, Sonthi M, Debnath PP, Elayaraja S, Rung-Ruangkijkrai T, Dong HT, Rodkhum C. Distribution of Vibrionaceae in farmed Asian sea bass, Lates calcarifer in Thailand and their high prevalence of antimicrobial resistance. J Fish Dis. 2022;45(9):1355–71. https://doi.org/10.1111/jfd.13667.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from nile tilapia in Thailand and fish-derived ST7 strains. Infect Genet Evol. 2015;36:307–14. https://doi.org/10.1016/j.meegid.2015.10.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong HT, Nguyen VV, Phiwsaiya K, Gangnonngiw W, Withyachumnarnkul B, Rodkhum C, Senapin S. Concurrent infections of Flavobacterium columnare and Edwardsiella ictaluri in striped catfish, Pangasianodon hypophthalmus in Thailand. Aquaculture. 2015;448:142–50. https://doi.org/10.1016/j.aquaculture.2015.05.046.

    Article 
    CAS 

    Google Scholar
     

  • Dong H, Nguyen V, Kayansamruaj P, Gangnonngiw W, Senapin S, Pirarat N, Nilubol D, Rodkhum C. Francisella noatunensis subsp. Orientalis infects striped catfish (Pangasianodon hypophthalmus) and common carp (Cyprinus carpio) but does not kill the hosts. Aquaculture. 2016;464. https://doi.org/10.1016/j.aquaculture.2016.06.033.

  • Lulijwa R, Rupia EJ, Alfaro AC. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: a review of the top 15 major producers. Rev Aquac. 2020;12:640–63.

    Article 

    Google Scholar
     

  • Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15(6). https://doi.org/10.3390/md15060158.

  • Reverter M, Sarter S, Caruso D, Avarre JC, Combe M, Pepey E, Pouyaud L, Vega-Heredía S, de Verdal H, Gozlan RE. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun. 2020;11(1). https://doi.org/10.1038/s41467-020-15735-6.

  • Santos L, Ramos F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int J Antimicrob Agents. 2018;52(2):135–43. https://doi.org/10.1016/j.ijantimicag.2018.03.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bound JP, Voulvoulis N. Pharmaceuticals in the aquatic environment–a comparison of risk assessment strategies. Chemosphere. 2004;56(11):1143–55. https://doi.org/10.1016/j.chemosphere.2004.05.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother. 2004;53(1):28–52. https://doi.org/10.1093/jac/dkg483.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ. Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual. 2005;34(6):2082–5. https://doi.org/10.2134/jeq2005.0026.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schar D, Zhao C, Wang Y, Larsson DGJ, Gilbert M, Van Boeckel TP. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat Commun. 2021;12(1). https://doi.org/10.1038/s41467-021-25655-8.

  • Raharjo HM, Budiyansah H, Mursalim MF, Chokmangmeepisarn P, Sakulworakan R, Debnath PP, Sivaramasamy E, Intan ST, Chuanchuen R, Dong HT, Mabrok M, Rodkhum C. The first evidence of blaCTX-M-55, QnrVC5, and novel insight into the genome of MDR Vibrio vulnificus isolated from Asian sea bass (Lates calcarifer) identified by resistome analysis. Aquaculture. 2023;571. https://doi.org/10.1016/j.aquaculture.2023.739500.

  • Verner-Jeffreys DW, Welch TJ, Schwarz T, Pond MJ, Woodward MJ, Haig SJ, Rimmer GSE, Roberts E, Morrison V, Baker-Austin C. High prevalence of Multidrug-Tolerant Bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS ONE. 2009;4(12):e8388. https://doi.org/10.1371/journal.pone.0008388.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu S, Wang Q, Wang R, Zhang Y, Lan R, He F, Yang Q. Horizontal transfer of antibiotic resistance genes within the bacterial communities in aquacultural environment. Sci Total Environ. 2022;820:153286. https://doi.org/10.1016/j.scitotenv.2022.153286.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • WHO, The AWaRe classification of antibiotics database. (2019).

  • Jeamsripong S, Thaotumpitak V, Anuntawirun S, Roongrojmongkhon N, Atwill ER, Hinthong W. Molecular epidemiology of antimicrobial resistance and virulence profiles of Escherichia coli, Salmonella spp., and Vibrio spp. Isolated from coastal seawater for aquaculture. Antibiotics. 2022;11(12). https://doi.org/10.3390/antibiotics11121688.

  • Nhinh DT, Le DV, Van KV, Giang NTH, Dang LT, Hoai TD. Prevalence, virulence gene distribution and alarming the multidrug resistance of aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics. 2021;10(5). https://doi.org/10.3390/antibiotics10050532.

  • Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio. 2014;5(5). https://doi.org/10.1128/mBio.01918-14.

  • Bacanlı M, Başaran N. Importance of antibiotic residues in animal food. Food Chem Toxicol. 2019;125:462–6. https://doi.org/10.1016/j.fct.2019.01.033.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health. 2021;3(1):32–8. https://doi.org/10.1016/j.bsheal.2020.09.004.

    Article 

    Google Scholar
     

  • Tiseo K, Huber L, Gilbert M, Robinson TP, Van Boeckel TP. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics. 2020;9(12):1–14. https://doi.org/10.3390/antibiotics9120918.

    Article 

    Google Scholar
     

  • Kimera ZI, Mshana SE, Rweyemamu MM, Mboera LEG, Matee MIN. Antimicrobial use and resistance in food-producing animals and the environment: an African perspective. Antimicrob Resist Infect Control. 2020;9(1). https://doi.org/10.1186/s13756-020-0697-x.

  • Van Boeckel TP, Pires J, Silvester R, Zhao C, Song J, Criscuolo NG, Gilbert M, Bonhoeffer S, Laxminarayan R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science. 2019;365(6459). https://doi.org/10.1126/science.aaw1944.

  • Underwood W, Anthony R. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition, 2020.

  • Patel R. MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem. 2015;61(1):100–11. https://doi.org/10.1373/clinchem.2014.221770.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakulworakan R, Chokmangmeepisarn P, Dinh-Hung N, Sivaramasamy E, Hirono I, Chuanchuen R, Kayansamruaj P, Rodkhum C. Insight into whole genome of Aeromonas veronii isolated from freshwater fish by resistome analysis reveal extensively antibiotic resistant traits. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.733668.

  • CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 34th Ed. CLSI M100. Clinical and Laboratory Standards Institute. (2024).

  • CLSI, Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated From Aquatic Animals, 2nd Ed. CLSI VET03; Clinical and Laboratory Standards Institute. (2020).

  • Smith P, Buba E, Desbois AP, Adams A, Verner-Jeffreys D, Joseph A, Light E, Le Devendec L, Jouy E, Larvor E. Setting epidemiological cut-off values relevant to MIC and disc diffusion data for Aeromonas salmonicida generated by a standard method. Dis Aquat Organ. 2024;159:29–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith P, Schwarz T, Verner-Jeffreys DW. Use of normalised resistance analyses to set interpretive criteria for antibiotic disc diffusion data produce by Aeromonas spp. Aquaculture. 2012;326–9. https://doi.org/10.1016/j.aquaculture.2011.11.011.

  • Wu CJ, Chuang YC, Lee MF, Lee CC, Lee HC, Lee NY, Chang CM, Chen PL, Lin YT, Yan JJ, Ko WC. Bacteremia due to extended-spectrum-β-lactamase-producing Aeromonas spp. At a medical center in Southern Taiwan. Antimicrob Agents Chemother. 2011;55(12):5813–8. https://doi.org/10.1128/aac.00634–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim KWONM-G, Kim Y-J, Myoung-Sug SEO, Jung-Soo, Kim D-H. Epidemiological Cut-off values ​​generated for disc diffusion data from Photobacterium damselae. Korean J Fisheries Aquat Sci. 2016;49(6):838–44. https://doi.org/10.5657/KFAS.2016.0838.

    Article 

    Google Scholar
     

  • Lim Y-J, Kim D-H, Roh HJ, Park M-A, Park C-I, Smith P. Epidemiological cut-off values for disc diffusion data generated by standard test protocols from Edwardsiella tarda and Vibrio harveyi. Aquacult Int. 2016;24:1153–61.

    Article 

    Google Scholar
     

  • Nadella RK, Panda SK, Kumar A, Uchoi D, Kishore P, Badireddy MR, Kuricheti PP, Raman RP, Mothadaka MP. AMR threat perception assessment of heterotrophic Bacteria from shrimp aquaculture through epidemiological cut off values. J AOAC Int. 2024;107(3):479–86. https://doi.org/10.1093/jaoacint/qsae011.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith P, Le Devendec L, Jouy E, Larvor E, Lesne J, Kirschner AKT, Rehm C, Leopold M, Pleininger S, Heger F, Jäckel C, Göllner C, Nekat J, Hammerl JA, Baron S. Epidemiological cut-off values for non-O1/ non-O139 Vibrio cholerae disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023a;156:115–21. https://doi.org/10.3354/dao03766.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith P, Le Devendec L, Jouy E, Larvor E, Le Breton A, Picon-Camacho S, Zrnčić S, Zupičić IG, Oraić D, Karataş S, Verner-Jeffreys D, Joseph AW, Light E, Essen-Zandbergen AV, van Gelderen B, Voorbergen-Laarman M, Haenen OLM, Veldman KT, Madsen L, Mouritsen KK, Smith Svanevik C, Håkonsholm F, Vela AI, García M, Florio D, Fioravanti M, Cortinovis L, Pretto T, Manfrin A, Baron S. Epidemiological cut-off values for Vibrio anguillarum MIC and disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023b;155:109–23. https://doi.org/10.3354/dao03745.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith P, Devendec L, Jouy E, Larvor E, Lesne J, Kirschner AKT, Rehm C, Leopold M, Pleininger S, Heger F, Jäckel C, Göllner C, Nekat J, Hammerl J, Baron S. Epidemiological cut-off values for non-O1/non-O139 Vibrio cholerae disc diffusion data generated by standardised methods. Dis Aquat Organ. 2023c. https://doi.org/10.3354/dao03766.

    Article 
    PubMed 

    Google Scholar
     

  • Rosário AECD, Barbanti ACC, Matos HC, Maia C.R.M.D.S., Trindade JM, Nogueira LFF, Pilarski F, Gallani SU, Leal CAG, Figueiredo HCP, Tavares GC. antimicrobial resistance in lactococcus spp. isolated from native brazilian fish species: a growing challenge for aquaculture. microorganisms 12(11) (2024). https://doi.org/10.3390/microorganisms12112327

  • Leal CAG, Silva BA, Colombo SA. Susceptibility profile and epidemiological cut-off values are influenced by serotype in fish pathogenic Streptococcus agalactiae. Antibiotics. 2023;12(12):1726.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dechêne-Tempier M, Bayon-Auboyer JE, Bougeard M-H, Chauvin S, Libante C, Payot V, Marois-Créhan S. C., Antimicrobial resistance profiles of Streptococcus suis isolated from pigs, wild boars, and humans in France between 1994 and 2020, Journal of Clinical Microbiology 61(9) (2023) e00164-23. https://doi.org/10.1128/jcm.00164–23

  • Hombach M, Jetter M, Blöchliger N, Kolesnik-Goldmann N, Keller PM, Böttger EC. Rapid disc diffusion antibiotic susceptibility testing for Pseudomonas aeruginosa, Acinetobacter baumannii and Enterococcus spp. J Antimicrob Chemother. 2018;73(2):385–91. https://doi.org/10.1093/jac/dkx404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kronvall G. Determination of the real standard distribution of susceptible strains in zone histograms. Int J Antimicrob Agents. 2003;22(1):7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kronvall G, Smith P. Normalized resistance interpretation, the NRI method: review of NRI disc test applications and guide to calculations. Apmis. 2016;124(12):1023–30.

    Article 
    PubMed 

    Google Scholar
     

  • Silley P. Susceptibility testing methods, resistance and breakpoints: what do these terms really mean? Revue Scientifique Et Technique-OIE. 2012;31(1):33.

    Article 
    CAS 

    Google Scholar
     

  • Krumperman PH. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983;46(1):165–70. https://doi.org/10.1128/aem.46.1.165-170.1983.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using spades de Novo assembler. Curr Protoc Bioinf. 2020;70(1):e102. https://doi.org/10.1002/cpbi.102.

    Article 
    CAS 

    Google Scholar
     

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2016;32:929–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, Edalatmand A, Petkau A, Syed SA, Tsang KK, Baker SJC, Dave M, McCarthy MC, Mukiri KM, Nasir JA, Golbon B, Imtiaz H, Jiang X, Kaur K, Kwong M, Liang ZC, Niu KC, Shan P, Yang JYJ, Gray KL, Hoad GR, Jia B, Bhando T, Carfrae LA, Farha MA, French S, Gordzevich R, Rachwalski K, Tu MM, Bordeleau E, Dooley D, Griffiths E, Zubyk HL, Brown ED, Maguire F, Beiko RG, Hsiao WWL, Brinkman FSL, Van Domselaar G, McArthur AG. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res. 2023;51D1. D690-d699.

  • Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother. 2020;75(12):3491–500. https://doi.org/10.1093/jac/dkaa345.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. https://doi.org/10.1186/1471-2105-10-421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson MHK, Bortolaia V, Tansirichaiya S, Aarestrup FM, Roberts AP, Petersen TN. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: mobileelementfinder. J Antimicrob Chemother. 2021;76(1):101–9. https://doi.org/10.1093/jac/dkaa390.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA; 2015 http://www.rstudio.com/.

  • DoF. Fisheries Statistics of Thailand 2020 no. 4/2022, Fisheries Statistics of Thailand 2020 No. 4/2022 (2022).

  • Petty BD, Francis-Floyd R. Bacterial Diseases of Fish. merck veterinary manual (2023).

  • Siboni N, et al. Increased abundance of potentially pathogenic Vibrio and a marine heatwave co-occur with a Pacific oyster summer mortality event. Aquaculture. 2024;583:740618.

    Article 

    Google Scholar
     

  • Preena PG, Swaminathan TR, Kumar VJR, Singh ISB. Antimicrobial resistance in aquaculture: a crisis for concern. Biologia. 2020;75(9):1497–517. https://doi.org/10.2478/s11756-020-00456-4.

    Article 

    Google Scholar
     

  • Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705. https://doi.org/10.3389/fmicb.2014.00705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson-Kueh S, Terence C, Chew XZ, Uichanco JA, Shen X. -situ hybridization, and phylogenetic analysis suggest that ‘big belly’ disease in barramundi, Lates calcarifer (Bloch), is caused by a novel Vibrio species. J Fish Dis. 2021;44(12):1985–92. https://doi.org/10.1111/jfd.13512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J. Vibrio spp. Infections. Nat Reviews Disease Primers. 2018;4(1):1–19. https://doi.org/10.1038/s41572-018-0005-8.

    Article 

    Google Scholar
     

  • Kanchanopas-Barnette P, Labella A, Alonso CM, Manchado M, Castro D, Borrego JJ. The first isolation of photobacterium damselae subsp. damselae from Asian seabass lates calcarifer. Fish Pathol. 2009;44(1):47–50. https://doi.org/10.3147/jsfp.44.47

  • Essam HM, Abdellrazeq GS, Tayel SI, Torky HA, Fadel AH. Pathogenesis of Photobacterium damselae subspecies infections in sea bass and sea Bream. Microb Pathog. 2016;99:41–50. https://doi.org/10.1016/j.micpath.2016.08.003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Austin B, Austin DA. Bacterial fish pathogens: Disease of farmed and wild fish. 2012.

  • Janda JM, Abbott SL. The genus aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. https://doi.org/10.1128/cmr.00039–09.

  • Austin B. Taxonomy of bacterial fish pathogens. Vet Res. 2011;42(1). https://doi.org/10.1186/1297-9716-42-20.

  • El-Bahar HM, Ali NG, Aboyadak IM, Khalil SAES, Ibrahim MS. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol. 2019;22(4):479–90. https://doi.org/10.1007/s10123-019-00075-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ran C, Qin C, Xie M, Zhang J, Li J, Xie Y, Wang Y, Li S, Liu L, Fu X, Lin Q, Li N, Liles MR, Zhou Z. Aeromonas veronii and Aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ Microbiol. 2018;20(9):3442–56. https://doi.org/10.1111/1462-2920.14390.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon nanotubes induce metabolomic profile disturbances in zebrafish: NMR-Based metabolomics platform. Front Mol Biosci. 2021;8. https://doi.org/10.3389/fmolb.2021.688827.

  • Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/streptococcus iniae in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2020;99:505–13. https://doi.org/10.1016/j.fsi.2020.02.033.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Irshath AA, Rajan AP, Vimal S, Prabhakaran VS, Ganesan R. Bacterial pathogenesis in various fish diseases: recent advances and specific challenges in vaccine development. Vaccines (Basel). 2023;11(2). https://doi.org/10.3390/vaccines11020470.

  • Dinh-Hung N, Dong HT, Taengphu S, Soontara C, Rodkhum C, Senapin S, Chatchaiphan S. Streptococcus suis is a lethal pathogen in snakeskin gourami, trichopodus pectoralis. Aquaculture. 2023;566:739173. https://doi.org/10.1016/j.aquaculture.2022.739173.

    Article 
    CAS 

    Google Scholar
     

  • Scherrer S, Biggel M, Schneeberger M, Cernela N, Rademacher F, Schmitt S, Stephan R. Genetic diversity and antimicrobial susceptibility of Streptococcus suis from diseased Swiss pigs collected between 2019–2022. Vet Microbiol. 2024;293. https://doi.org/10.1016/j.vetmic.2024.110084.

  • Wertheim HF, Nghia HD, Taylor W, Schultsz C. Streptococcus suis: an emerging human pathogen. Clin Infect Dis. 2009;48(5):617–25. https://doi.org/10.1086/596763.

    Article 
    PubMed 

    Google Scholar
     

  • Okura M, Osaki M, Nomoto R, Arai S, Osawa R, Sekizaki T, Takamatsu D. Current taxonomical situation of Streptococcus suis. Pathogens. 2016;5(3). https://doi.org/10.3390/pathogens5030045.

  • Xu T, Zhang X-H. Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture. 2014;431:129–35.

    Article 

    Google Scholar
     

  • Fadel A, Mabrok M, Aly S. Epizootics of Pseudomonas anguilliseptica among cultured seabream (Sparus aurata) populations: control and treatment strategies. Microb Pathog. 2018;121:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duman M, Valdés E, Ay H, Altun S. Satıcıoğlu I., description of a novel fish pathogen, plesiomonas shigelloides subsp. oncorhynchi, isolated from rainbow trout (oncorhynchus mykiss): first genome analysis and comparative genomics. Fishes 8 (2023) 179. https://doi.org/10.3390/fishes8040179

  • Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. Antimicrobial resistance: A growing serious threat for global public health. Healthc (Basel). 2023;11(13). https://doi.org/10.3390/healthcare11131946.

  • Kaur N, Prasad R, Varma A. Prevalence and antibiotic susceptibility pattern of methicillin resistant Staphylococcus aureus in tertiary care hospitals. Biotechnol J Int. 2014;4(3):228–35. https://doi.org/10.9734/BBJ/2014/4245.

    Article 
    CAS 

    Google Scholar
     

  • Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol 7(8) (2012) 959– 78. https://doi.org/10.2217/fmb.12.63

  • Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482–501. https://doi.org/10.3934/microbiol.2018.3.482.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suyamud B, Chen Y, Quyen DTT, Dong Z, Zhao C, Hu J. Antimicrobial resistance in aquaculture: occurrence and strategies in Southeast Asia. Sci Total Environ. 2024;907:167942. https://doi.org/10.1016/j.scitotenv.2023.167942.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janda JM, Abbott SL. The genus aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23(1):35–73. 10.1128/CMR.00039– 09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio. 2017;8(3). https://doi.org/10.1128/mBio.00543–17.

  • Yang YQ, Li YX, Lei CW, Zhang AY, Wang HN. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(7):1791–5. https://doi.org/10.1093/jac/dky111.

  • Wang Y, Hou N, Rasooly R, Gu Y, He X. Prevalence and genetic analysis of chromosomal mcr-3/7 in Aeromonas from U.S. animal-derived samples. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.667406.

  • Odeyemi OA, Ahmad A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci. 2017;24(1):65–70. https://doi.org/10.1016/j.sjbs.2015.09.016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azzam-Sayuti M, Ina-Salwany MY, Zamri-Saad M, Yusof MT, Annas S, Najihah MY, Liles MR, Monir MS, Zaidi Z, Amal MNA. The prevalence, putative virulence genes and antibiotic resistance profiles of Aeromonas spp. Isolated from cultured freshwater fishes in Peninsular Malaysia. Aquaculture. 2021;540. https://doi.org/10.1016/j.aquaculture.2021.736719.

  • Zdanowicz M, Mudryk ZJ, Perliński P. Abundance and antibiotic resistance of Aeromonas isolated from the water of three carp ponds. Vet Res Commun. 2020;44(1):9–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain S, De Silva BCJ, Wimalasena S, Pathirana H, Dahanayake PS, Heo GJ. Distribution of antimicrobial resistance genes and class 1 integron gene cassette arrays in motile Aeromonas spp. Isolated from goldfish (Carassius auratus). Microb Drug Resist. 2018;24(8):1217–25. https://doi.org/10.1089/mdr.2017.0388.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jagoda SS, Wijewardana TG, Arulkanthan A, Igarashi Y, Tan E, Kinoshita S, Watabe S, Asakawa. S., Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia, Dis Aquat Organ 109(2) (2014) 127– 37. https://doi.org/10.3354/dao02733

  • Rico A, et al. Use, fate and ecological risks of antibiotics applied in tilapia cage farming in Thailand. Environ Pollut. 2014;191:8–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan J, Shan Q, Wang J, Liu S, Li L, Zheng G. Comparative pharmacokinetics of Enrofloxacin in healthy and Aeromonas hydrophila-infected crucian carp (Carassius auratus gibelio). J Vet Pharmacol Ther. 2017;40(5):580–2. https://doi.org/10.1111/jvp.12392.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godoy DT, Mian GF, Zanolo R, Yuhara TY, Faria FC, Figueiredo HCP. Patterns of resistance to florfenicol and bicyclomycin in Brazilian strains of motile aeromonads. Aquaculture. 2008;285(1–4):255–9. https://doi.org/10.1016/j.aquaculture.2008.08.014.

    Article 
    CAS 

    Google Scholar
     

  • Mursalim MF, Budiyansah H, Raharjo HM, Chokomangmeepisarn P, Sakulworakan R, Yindee J, Chanchaithong P, Rodkhum C. Characterization and antimicrobial susceptibility of Aeromonas spp. Isolated from diseased Asian sea bass (Lates calcarifer). Thai J Veterinary Med. 2020;50:10–3.


    Google Scholar
     

  • Chiou J, Li R, Chen S. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrob Agents Chemother. 2015;59(6):3593–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang G, Sun K, Ai G, Li J, Tang N, Song Y, Wang C, Feng J. A novel family of intrinsic Chloramphenicol acetyltransferase CATC in Vibrio parahaemolyticus: naturally occurring variants reveal diverse resistance levels against Chloramphenicol. Int J Antimicrob Agents. 2019;54(1):75–9. https://doi.org/10.1016/j.ijantimicag.2019.03.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuyama R, Kuninaga N, Morimoto T, Shibano T, Sudo A, Sudo K, Asano M, Suzuki M, Asai T. Isolation and antimicrobial susceptibility of Plesiomonas shigelloides from great cormorants (Phalacrocorax carbo hanedae) in Gifu and Shiga prefectures, Japan. J Vet Med Sci. 2015;77(9):1179–81. https://doi.org/10.1292/jvms.15–0014.

  • Deng L, Li Y, Geng Y, Zheng L, Rehman T, Zhao R, Wang K, OuYang P, Chen D, Huang X, He C, Yang Z, Lai W. Molecular serotyping and antimicrobial susceptibility of Streptococcus agalactiae isolated from fish in China. Aquaculture. 2019;510:84–9. https://doi.org/10.1016/j.aquaculture.2019.05.046.

    Article 
    CAS 

    Google Scholar
     

  • Sapkota A, Ojo K, Roberts M, Schwab K. Antibiotic resistance genes in multidrug-resistant Enterococcus spp. And Streptococcus spp. Recovered from the indoor air of a large‐scale swine‐feeding operation. Lett Appl Microbiol. 2006;43(5):534–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harbor Perspect Med. 2016;6(6):a027029.

    Article 

    Google Scholar
     

  • Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL. Lactococcus garvieae in fish: A review. Comp Immunol Microbiol Infect Dis. 2006;29(4):177–98. https://doi.org/10.1016/j.cimid.2006.06.003.

    Article 
    PubMed 

    Google Scholar
     

  • Ricci G, Ferrario C, Borgo F, Rollando A, Fortina MG. Genome sequences of Lactococcus garvieae TB25, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow trout. J Bacteriol. 2012;194(5):1249–50. https://doi.org/10.1128/JB.06655-11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suyamud B, Lohwacharin J, Yang Y, Sharma VK. Antibiotic resistant bacteria and genes in shrimp aquaculture water: identification and removal by ferrate(VI). J Hazard Mater. 2021;420. https://doi.org/10.1016/j.jhazmat.2021.126572.

  • Ong HMG, Zhong Y, Hu CC, Ong KH, Khor WC, Schlundt J, Aung KT. quantitative risk evaluation of antimicrobial-resistant vibrio parahaemolyticus isolated from farmed grey mullets in Singapore. Pathogens 12(1) (2023). https://doi.org/10.3390/pathogens12010093

  • Eid HM, El-Mahallawy HS, Shalaby AM, Elsheshtawy HM, Shetewy MM, Hussein Eidaroos N. Emergence of extensively drug-resistant Aeromonas hydrophila complex isolated from wild Mugil cephalus (striped mullet) and mediterranean seawater. Vet World. 2022;15(1):55–64. https://doi.org/10.14202/vetworld.2022.55-64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odeyemi OA, Ahmad A. Antibiotic resistance profiling and phenotyping of Aeromonas species isolated from aquatic sources. Saudi J Biol Sci. 2017;24(1):65–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perretta A, Antúnez K, Zunino P. Phenotypic, molecular and pathological characterization of motile aeromonads isolated from diseased fishes cultured in Uruguay. J Fish Dis. 2018;41(10):1559–69. https://doi.org/10.1111/jfd.12864.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dias C, Borges A, Saavedra MJ, Simões M. Biofilm formation and multidrug-resistant Aeromonas spp. From wild animals. J Global Antimicrob Resist. 2018;12:227–34. https://doi.org/10.1016/j.jgar.2017.09.010.

    Article 

    Google Scholar
     

  • Borella L, Salogni C, Vitale N, Scali F, Moretti VM, Pasquali P, Alborali GL. Motile aeromonads from farmed and wild freshwater fish in Northern italy: an evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016. Acta Vet Scand. 2020;62(1). https://doi.org/10.1186/s13028-020-0504-y.

  • Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, Nasruddin NS. Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. Isolated from cultured marine fishes in Malaysia. BMC Vet Res. 2019;15(1). https://doi.org/10.1186/s12917-019-1907-8.

  • Xu Y, Wang C, Zhang G, Tian J, Liu Y, Shen X, Feng J. ISCR2 is associated with the dissemination of multiple resistance genes among Vibrio spp. And Pseudoalteromonas spp. Isolated from farmed fish. Arch Microbiol. 2017;199(6):891–6. https://doi.org/10.1007/s00203-017-1365-2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu ZM, Dong CF, Weng SP, He JG. The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀) × E. lanceolatus (♂), in China. J Fish Dis. 2018;41(4):589–601. https://doi.org/10.1111/jfd.12758.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park K-H, Jung S-I, Jung Y-S, Shin J-H, Hwang J-H. Marine bacteria as a leading cause of necrotizing fasciitis in coastal areas of South Korea. Am J Trop Med Hyg. 2009;80(4):646.

    Article 
    PubMed 

    Google Scholar
     

  • Rolain J-M. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol. 2013;4:173.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adzitey F. Antibiotic resistance of Escherichia coli isolated from beef and its related samples in Techiman municipality. of Ghana; 2015.

  • Davis R, Brown PD. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 2016;65(4):261–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mthembu TP, Zishiri OT, El Zowalaty ME. Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect Drug Resist. 2019;12:3537–48. https://doi.org/10.2147/IDR.S211618. PMID: 31814742; PMCID: PMC6861519.

  • Apun K, Chong YL, Abdullah MT, Micky V. Antimicrobial susceptibilities of escherichia coli isolates from food animals and wildlife animals in sarawak, East Malaysia. Asian J Anim Veterinary Adv. 2008;3(6):409–16. https://doi.org/10.3923/ajava.2008.409.416.

    Article 

    Google Scholar
     

  • Vivekanandhan G, Savithamani K, Hatha AAM, Lakshmanaperumalsamy P. Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and Prawn of South India. Int J Food Microbiol. 2002;76(1–2):165–8. https://doi.org/10.1016/S0168-1605(02)00009–0.

  • Changsen C, Likhitrattanapisal S, Lunha K, Chumpol W, Jiemsup S, Prachumwat A, Kongkasuriyachai D, Ingsriswang S, Chaturongakul S, Lamalee A, Yongkiettrakul S, Buates S. Incidence, genetic diversity, and antimicrobial resistance profiles of Vibrio parahaemolyticus in seafood in Bangkok and Eastern Thailand. PeerJ. 2023;11:e15283. https://doi.org/10.7717/peerj.15283.

  • Wang CZ, Wang MG, Chu YF, Sun RY, Li JG, Li XA, Sun J, Liu YH, Zhou YF, Liao XP. Antibiotic resistance patterns and molecular characterization of Streptococcus suis isolates from swine and humans in China. Microbiol Spectr. 2023;11(3):e0030923. https://doi.org/10.1128/spectrum.00309–23.

  • Yuan K, Wang X, Chen X, Zhao Z, Fang L, Chen B, Jiang J, Luan T, Chen B. Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere. 2019;234:520–7. https://doi.org/10.1016/j.chemosphere.2019.06.085.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller RA, Harbottle H. Antimicrobial drug resistance in fish pathogens. Microbiol Spectr. 2018;6(1). https://doi.org/10.1128/microbiolspec.ARBA-0017-2017.

  • Fang H, Ye N, Huang K, Yu J, Zhang S. Mobile genetic elements drive the antibiotic resistome alteration in freshwater shrimp aquaculture. Water. 2021;13(11):1461.

    Article 
    CAS 

    Google Scholar
     

  • Shao S, Hu Y, Cheng J, Chen Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol. 2018;38(8):1195–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bondad-Reantaso MG, MacKinnon B, Karunasagar I, Fridman S, Alday-Sanz V, Brun E, Le Groumellec M, Li A, Surachetpong W, Karunasagar I, Hao B, Dall’Occo A, Urbani R, Caputo A. Reviews Aquaculture. 2023;15(4):1421–51. https://doi.org/10.1111/raq.12786. Review of alternatives to antibiotic use in aquaculture.

    Article 

    Google Scholar
     

  • Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Domínguez M, Miranda CD, Fuentes O, De La Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of transferable integrons and Sul and Dfr genes among Sulfonamide-and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Front Microbiol. 2019;10:748.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adelowo OO, Helbig T, Knecht C, Reincke F, Mäusezahl I, Müller JA. High abundances of class 1 integrase and sulfonamide resistance genes, and characterisation of class 1 integron gene cassettes in four urban wetlands in Nigeria. PLoS ONE. 2018;13(11):e0208269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li P, Wei Y, Li G, Cheng H, Xu Z, Yu Z, Deng Q, Shi Y. Comparison of antimicrobial efficacy of Eravacycline and Tigecycline against clinical isolates of Streptococcus agalactiae in china: in vitro activity, heteroresistance, and cross-resistance. Microb Pathog. 2020;149:104502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haenni M, Lupo A, Madec J-Y. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr. 2018;6(2). https://doi.org/10.1128/microbiolspec.arba-0008-2017.

  • Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mrea, from Streptococcus agalactiae. Antimicrob Agents Chemother. 1997;41(12):2719–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarebout G, Villers C, Leclercq R. Macrolide resistance gene MreA of Streptococcus agalactiae encodes a flavokinase. Antimicrob Agents Chemother. 2001;45(8):2280–6. https://doi.org/10.1128/aac.45.8.2280-2286.2001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Azavedo JC, McGavin M, Duncan C, Low DE, McGeer A. Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from ontario, Canada. Antimicrob Agents Chemother. 2001;45(12):3504–8. https://doi.org/10.1128/aac.45.12.3504-3508.2001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dechêne-Tempier M, de Boisséson C, Lucas P, Bougeard S, Marois-Créhan LV, Payot C. Virulence genes, resistome and mobilome of Streptococcus suis strains isolated in France. Microb Genom. 2024;10(3). https://doi.org/10.1099/mgen.0.001224.

  • Hadjirin NF, Miller EL, Murray GGR, Yen PLK, Phuc HD, Wileman TM, Hernandez-Garcia J, Williamson SM, Parkhill J, Maskell DJ, Zhou R, Fittipaldi N, Gottschalk M, Tucker AW, Hoa NT, Welch JJ, Weinert LA. Large-scale genomic analysis of antimicrobial resistance in the zoonotic pathogen Streptococcus suis. BMC Biol. 2021;19(1):191. https://doi.org/10.1186/s12915-021-01094-1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner G, Aamot HV, Couto N. Antimicrobial susceptibility prediction from genomes: a dream come true? Trends Microbiol. 2024;32(4):317–8. https://doi.org/10.1016/j.tim.2024.02.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coll F, Gouliouris T, Blane B, Yeats CA, Raven KE, Ludden C, Khokhar FA, Wilson HJ, Roberts LW, Harrison EM, Horner CS, Le TH, Nguyen TH, Nguyen VT, Brown NM, Holmes MA, Parkhill J, Estee Török M, Peacock SJ. Antibiotic resistance determination using Enterococcus faecium whole-genome sequences: a diagnostic accuracy study using genotypic and phenotypic data. Lancet Microbe. 2024;5(2):e151–63. https://doi.org/10.1016/S2666-5247(23)00297-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Estrada AA, Gottschalk M, Gebhart CJ, Marthaler DG. Comparative analysis of Streptococcus suis genomes identifies novel candidate virulence-associated genes in North American isolates, Veterinary Research 53(1) (2022) 23. https://doi.org/10.1186/s13567-022-01039-8

  • Rodrigo MKD, Saiganesh A, Hayes AJ, Wilson AM, Anstey J, Pickering JL, Iwasaki J, Hillas J, Winslow S, Woodman T, Nitschke P, Lacey JA, Breese KJ, van der Linden MPG, Giffard PM, Tong SYC, Gray N, Stubbs KA, Carapetis JR, Bowen AC, Davies MR, Barnett TC. Host-dependent resistance of group A Streptococcus to sulfamethoxazole mediated by a horizontally-acquired reduced folate transporter. Nat Commun. 2022;13(1):6557. https://doi.org/10.1038/s41467-022-34243-3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4). https://doi.org/10.1128/cmr.00088–17.

  • Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018;26(3):220–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res. 2022;50(6):3155–68. https://doi.org/10.1093/nar/gkac163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razavi M, Kristiansson E, Flach C, Larsson D. The association between insertion sequences and antibiotic resistance genes. mSphere 5, 418–420. doi: 10.1128/mSphere: 00418– 20, PMID:[Europe PMC free article][Abstract][CrossRef][Google Scholar] (2020).

  • Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49:577–601. https://doi.org/10.1146/annurev-genet-112414-055018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brochet M, Couvé E, Glaser P, Guédon G, Payot S. Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol. 2008;190(20):6913–7. https://doi.org/10.1128/jb.00824-08.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlovic G, Burrus V, Gintz B, Decaris B, Guedon G. Evolution of genomic Islands by deletion and tandem accretion by site-specific recombination: ICE St1-related elements from Streptococcus thermophilus. Microbiology. 2004;150(4):759–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumpradit N, Wongkongkathep S, Malathum K, Janejai N, Paveenkittiporn W, Yingyong T, Chuxnum T, Vijitleela A, Boonyarit P, Akaleephan C, Manosuthi W, Thienthong V, Srinha J, Wongsrichai S, Laoprasert T, Athipunyakom P, Kriengchaiyaprug N, Intarukdach K, Numsawad S, Somjetanakul N, Punnin S, Kiatying-Angsulee N. Thailand’s National strategic plan on antimicrobial resistance: progress and challenges. Bull World Health Organ. 2021;99(9):661–73. https://doi.org/10.2471/blt.20.280644.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar