• Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779–1782 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2. Phys. Rev. Lett. 43, 1892–1896 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Ernst, S. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2. Nature 474, 362–366 (2011).

    Article 

    Google Scholar
     

  • Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Aynajian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2. Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2. Nature 465, 570–576 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ghaemi, P. & Senthil, T. Higher angular momentum Kondo liquids. Phys. Rev. B 75, 144412 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ghaemi, P., Senthil, T. & Coleman, P. Angle-dependent quasiparticle weights in correlated metals. Phys. Rev. B 77, 245108 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Moreno, J. & Coleman, P. Gap-anisotropic model for the narrow-gap Kondo insulators. Phys. Rev. Lett. 84, 342–345 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Weber, H. & Vojta, M. Heavy-fermion metals with hybridization nodes: unconventional Fermi liquids and competing phases. Phys. Rev. B 77, 125118 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sundermann, M. et al. Orientation of the ground-state orbital in CeCoIn5 and CeRhIn5. Phys. Rev. B 99, 235143 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hanzawa, K. Crystalline electric field effects and hidden order in URu2Si2. J. Phys. Soc. Jpn 81, 114713 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Goremychkin, E. A., Osborn, R. & Sashin, I. L. Crystal field in the heavy fermion compound CeAl3. J. Appl. Phys. 85, 6046–6048 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Christianson, A. et al. Crystal field effects in CeIrIn5. J. Neutron Res. 13, 179–182 (2005).

    Article 

    Google Scholar
     

  • Stockert, O. et al. Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2. Phys. B 378-380, 157–158 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Levy, P. M. & Zhang, S. Crystal-field splitting in Kondo systems. Phys. Rev. Lett. 62, 78–81 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Cornut, B. & Coqblin, B. Influence of the crystalline field on the Kondo effect of alloys and compounds with cerium impurities. Phys. Rev. B 5, 4541–4561 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Herrera, E. et al. Quantum-well states at the surface of a heavy-fermion superconductor. Nature 616, 465–469 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Guerci, D. et al. Chiral Kondo lattice in doped MoTe2/WSe2 bilayers. Sci. Adv. 9, eade7701 (2023).

    Article 

    Google Scholar
     

  • Zhao, W. et al. Gate-tunable heavy fermions in a moiré Kondo lattice. Nature 616, 61–65 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chen, L. et al. Metallic quantum criticality enabled by flat bands in a kagome lattice. Preprint at https://arxiv.org/abs/2307.09431 (2023).

  • Posey, V. A. et al. Two-dimensional heavy fermions in the van der Waals metal CeSiI. Nature 625, 483–488 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Okuma, R., Ritter, C., Nilsen, G. J. & Okada, Y. Magnetic frustration in a van der Waals metal CeSiI. Phys. Rev. Mater. 5, L121401 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jang, B. G., Lee, C., Zhu, J.-X. & Shim, J. H. Exploring two-dimensional van der Waals heavy-fermion material: data mining theoretical approach. npj 2D Mater. Appl. 6, 80 (2022).

    Article 

    Google Scholar
     

  • Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Knorr, N., Schneider, M. A., Diekhöner, L., Wahl, P. & Kern, K. Kondo effect of single Co adatoms on Cu surfaces. Phys. Rev. Lett. 88, 096804 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ. Science 297, 1148–1151 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, B. B. et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5. Nat. Phys. 9, 474–479 (2013).

    Article 

    Google Scholar
     

  • Kadowaki, K. & Woods, S. Universal relationship of the resistivity and specific heat in heavy-fermion compounds. Solid State Commun. 58, 507–509 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Mattausch, H. & Simon, A. Si(6), Si(14), and Si(22) rings in iodide silicides of rare earth metals. Angew. Chem. Int. Ed. 37, 499–502 (1998).

    Article 

    Google Scholar
     

  • Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Turkel, S. Experimental data for nodal hybridization in a two-dimensional heavy-fermion material. Zenodo https://doi.org/10.5281/zenodo.16814852 (2025).