Hohenlohe PA, Funk WC, Rajora OP. Population genomics for wildlife conservation and management. Mol Ecol. 2021;30:62–82.
Lancaster LT, Fuller ZL, Berger D, Barbour MA, Jentoft S, Wellenreuther M. Understanding climate change response in the age of genomics. J Anim Ecol. 2022;91(6):1056–63.
Bernatchez L, Ferchaud A-L, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet. 2024;25:165–83.
Andersson L, Bekkevold D, Berg F, Farrell ED, Felkel S, Ferreira MS, et al. How fish population genomics can promote sustainable fisheries: a road map. Annu Rev Anim Biosci. 2024;12:1–20.
Formenti G, Theissinger K, Fernandes C, Bista I, Bombarely A, Bleidorn C, et al. The era of reference genomes in conservation genomics. Trends Ecol Evol. 2022;37:197–202.
Pettersson ME, Rochus CM, Han F, Chen J, Hill J, Wallerman O, et al. A chromosome-level assembly of the Atlantic herring genome—detection of a supergene and other signals of selection. Genome Res. 2019;29:1919–28.
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, et al. How genomics can help biodiversity conservation. Trends Genet. 2023;39:545–59.
Hotaling S, Kelley JL, Frandsen PB. Toward a genome sequence for every animal: where are we now? Proc Natl Acad Sci U S A. 2021;118:e2109019118.
Bentley BP, Armstrong EE. Good from far, but far from good: The impact of a reference genome on evolutionary inference. Mol Ecol Resour. 2022;22:12–4.
Armstrong EE, Taylor RW, Miller DE, Kaelin CB, Barsh GS, Hadly EA, et al. Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. BMC Biol. 2020;18:3.
Gopalakrishnan S, Samaniego Castruita JA, Sinding M-HS, Kuderna LFK, Räikkönen J, Petersen B, et al. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genom. 2017;18:495.
Prasad A, Lorenzen ED, Westbury MV. Evaluating the role of reference-genome phylogenetic distance on evolutionary inference. Mol Ecol Resour. 2022;22:45–55.
Thorburn D-MJ, Sagonas K, Binzer-Panchal M, Chain FJJ, Feulner PGD, Bornberg-Bauer E, et al. Origin matters: Using a local reference genome improves measures in population genomics. Mol Ecol Res. 2023;23:1706–23.
Deng X-L, Frandsen PB, Dikow RB, Favre A, Shah DN, Shah RDT, et al. The impact of sequencing depth and relatedness of the reference genome in population genomic studies: a case study with two caddisfly species (Trichoptera, Rhyacophilidae, Himalopsyche). Ecol Evol. 2022;12:e9583.
Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, et al. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol. 2017;26:4452–66.
Wellenreuther M, Bernatchez L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol Evol. 2018;33:427–40.
Huang K, Andrew RL, Owens GL, Ostevik KL, Rieseberg LH. Multiple chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype. Mol Ecol. 2020;29:2535–49.
Akopyan M, Tigano A, Jacobs A, Wilder AP, Baumann H, Therkildsen NO. Comparative linkage mapping uncovers recombination suppression across massive chromosomal inversions associated with local adaptation in Atlantic silversides. Mol Ecol. 2022;31:3323–41.
Mérot C, Berdan EL, Cayuela H, Djambazian H, Ferchaud A-L, Laporte M, et al. Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Mol Biol Evol. 2021;38:3953–71.
Hager ER, Harringmeyer OS, Wooldridge TB, Theingi S, Gable JT, McFadden S, et al. A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science. 2022;377:399–405.
Berg PR, Star B, Pampoulie C, Sodeland M, Barth JMI, Knutsen H, et al. Three chromosomal rearrangements promote genomic divergence between migratory and stationary ecotypes of Atlantic cod. Sci Rep. 2016;6:23246.
Sodeland M, Jorde PE, Lien S, Jentoft S, Berg PR, Grove H, et al. “Islands of divergence” in the Atlantic cod genome represent polymorphic chromosomal rearrangements. Gen Biol Evol. 2016;8:1012–22.
Berg PR, Star B, Pampoulie C, Bradbury IR, Bentzen P, Hutchings JA, et al. Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity. 2017;119:418–28.
Matschiner M, Barth JMI, Tørresen OK, Star B, Baalsrud HT, Brieuc MSO, et al. Supergene origin and maintenance in Atlantic cod. Nat Ecol Evol. 2022;6:469–81.
Weist P, Jentoft S, Tørresen OK, Schade FM, Pampoulie C, Krumme U, et al. The role of genomic signatures of directional selection and demographic history in the population structure of a marine teleost with high gene flow. Ecol Evol. 2022;12:e9602.
Le Moan A, Bekkevold D, Hemmer-Hansen J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity. 2021;126:668–83.
Hoff SNK, Maurstad MF, Tørresen OK, Berg PR, Præbel K, Jakobsen KS, et al. Chromosomal fusions and large-scale inversions are key features for adaptation in Arctic codfish species. bioRxiv. 2024;2024.06.28.599280.
Hoff SNK, Maurstad MF, Le Moan A, Ravinet M, Pampoulie C, Vieweg I, et al. Population divergence manifested by genomic rearrangements in a keystone Arctic species with high gene flow. bioRxiv. 2024;2024.06.28.597535.
Jentoft S, Tørresen OK, Tooming-Klunderud A, Skage M, Kollias S, Jakobsen KS, et al. The genome sequence of the Atlantic cod, Gadus morhua (Linnaeus, 1758). Wellcome Open Res. 2024;9:189.
Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvärinen O, Ruosteenoja K, et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun Earth Environ. 2022;3:1–10.
Gordeeva NV, Mishin AV. Population genetic diversity of Arctic cod (Boreogadus saida) of Russian Arctic seas. J Ichthyol. 2019;59:246–54.
Quintela M, Bhat S, Præbel K, Gordeeva N, Seljestad GW, Hanebrekke T, et al. Distinct genetic clustering in the weakly differentiated polar cod, Boreogadus saida Lepechin, 1774 from East Siberian Sea to Svalbard. Polar Biol. 2021;44:1711–24.
Madsen ML, Nelson RJ, Fevolden S-E, Christiansen JS, Præbel K. Population genetic analysis of Euro-Arctic polar cod Boreogadus saida suggests fjord and oceanic structuring. Polar Biol. 2016;39:969–80.
Maes SM, Christiansen H, Mark FC, Lucassen M, Van de Putte A, Volckaert FAM, et al. High gene flow in polar cod (Boreogadus saida) from West-Svalbard and the Eurasian Basin. J Fish Biol. 2021;99:49–60.
Nelson RJ, Bouchard C, Fortier L, Majewski AR, Reist JD, Præbel K, et al. Circumpolar genetic population structure of polar cod, Boreogadus saida. Polar Biol. 2020;43:951–61.
Wilson RE, Sage GK, Wedemeyer K, Sonsthagen SA, Menning DM, Gravley MC, et al. Micro-geographic population genetic structure within Arctic cod (Boreogadus saida) in Beaufort Sea of Alaska. ICES J Mar Sci. 2019;76:1713–21.
Wilson RE, Sonsthagen SA, Lavretsky P, Majewski A, Árnason E, Halldórsdóttir K, et al. Low levels of hybridization between sympatric cold-water-adapted Arctic cod and polar cod in the Beaufort Sea confirm genetic distinctiveness. Arct. Sci. 2022;as-2021–0030.
Bringloe TT, Bourret A, Cote D, Roux M-J, Herbig J, Robert D, et al. Genomic architecture and population structure of Boreogadus saida from Canadian waters. Sci Rep. 2024;14:19331.
Maes SM, Verheye ML, Bouchard C, Geslain E, Hellemans B, Johansen T, et al. Reduced-representation sequencing detects trans-Arctic connectivity and local adaptation in polar cod (Boreogadus saida). Mol Ecol. 2025;34:e17706.
Mecklenburg CW, Lynghammar A, Johannesen E, Byrkjedal I, Christiansen JS, Dolgov AV, et al. Marine fishes of the Arctic region Volume 1. Conservation of Arctic flora and fauna monitoring series 28, Norwegian Ministry of Foreign Affairs. 2018. https://repository.library.noaa.gov/view/noaa/28036. Accessed 03.02.2023.
Wilson RE, Sonsthagen SA, Smé N, Gharrett AJ, Majewski AR, Wedemeyer K, et al. Mitochondrial genome diversity and population mitogenomics of polar cod (Boreogadus saida) and Arctic dwelling gadoids. Polar Biol. 2020;43:979–94.
Pálsson S, Källman T, Paulsen J, Árnason E. An assessment of mitochondrial variation in Arctic gadoids. Polar Biol. 2009;32:471–9.
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genom Biol. 2016;17:132.
Tørresen OK, Star B, Jentoft S, Reinar WB, Grove H, Miller JR, et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18:95.
Tørresen OK, Brieuc MSO, Solbakken MH, Sørhus E, Nederbragt AJ, Jakobsen KS, et al. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics. 2018;19:240.
Reinar WB, Tørresen OK, Nederbragt AJ, Matschiner M, Jentoft S, Jakobsen KS. Teleost genomic repeat landscapes in light of diversification rates and ecology. Mob DNA. 2023;14:14.
Chen N-C, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reducing reference bias using multiple population genomes. Genom Biol. 2021;22:8.
Araya RA, Reinar WB, Tørresen OK, Goubert C, Daughton TJ, Hoff SNK, et al. Chromosomal inversions mediated by tandem insertions of transposable elements. Gen. Biol. Evol. 2025;17(8), https://doi.org/10.1093/gbe/evaf131.
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun. 2024;15:9136.
Stevison LS, Hoehn KB, Noor MAF. Effects of inversions on within- and between-species recombination and divergence. Gen Biol Evol. 2011;3:830–41.
Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol. 2022;6:1965–79.
Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23:38–44.
Han F, Jamsandekar M, Pettersson ME, Su L, Fuentes-Pardo AP, Davis BW, et al. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. Elife. 2020;9:e61076.
Stewart NB, Rogers RL. Chromosomal rearrangements as a source of new gene formation in Drosophila yakuba. PLoS Genet. 2019;15:e1008314.
Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61.
Villoutreix R, Ayala D, Joron M, Gompert Z, Feder JL, Nosil P. Inversion breakpoints and the evolution of supergenes. Mol Ecol. 2021;30:2738–55.
Guillén Y, Ruiz A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics. 2012;13:53.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013 http://arxiv.org/abs/1303.3997. Accessed 23.08.2022.
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.
Broad Institute. Picard Toolkit. 2019. https://broadinstitute.github.io/picard/. Accessed 23.08.2022.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics. 2018;34:867–8.
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15:e1006650.
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:1185–92.
Weir BS, Cockerham CC. Estimating f-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
Korunes KL, Samuk K. Pixy: unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Mol Ecol Resour. 2021;21:1359–68.
Li H, Ralph P. Local PCA shows how the effect of population structure differs along the genome. Genetics. 2019;211:289–304.
Mérot C. Making the most of population genomic data to understand the importance of chromosomal inversions for adaptation and speciation. Mol Ecol. 2020;29:2513–6.
Kratochvíl M, Bednárek D, Sieger T, Fišer K, Vondrášek J. Shinysom: graphical som-based analysis of single-cell cytometry data. Bioinformatics. 2020;36:3288–9.
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49.
Bandi V, Gutwin C, Siri JN, Neufeld E, Sharpe A, Parkin I. Visualization tools for genomic conservation. Methods Mol Biol. 2022;2443:285–308.
Huang N, Li H. Compleasm: a faster and more accurate reimplementation of BUSCO. Bioinformatics. 2023;39:btad595.
Tegenfeldt F, Kuznetsov D, Manni M, Berkeley M, Zdobnov EM, Kriventseva EV. OrthoDB and BUSCO update: annotation of orthologs with wider sampling of genomes. Nucl Aci Res. 2025;53:D516–22.
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genom Biol. 2019;20:238.
Maurstad MF. Arctogadus glacialis genomics and reference bias. Whole genome sequencing population data sets for Arctogadus glacialis. The European Nucleotide Archive (ENA). 2025. PRJEB88972.
Hoff SNK. Chromosomal fusions and large-scale inversions are key features for adaptation in Arctic codfish species. Reference genome assemblies of seven codfishes. The European Nucleotide Archive (ENA). 2024. PRJEB77069.
Tørresen OK. Draft assembly of Boreogadus saida. An Oxford Nanopore draft genome of Boreogadus saida. 2025. https://doi.org/10.5281/zenodo.16882388.
Yi X, Latch EK. Nonrandom missing data can bias principal component analysis inference of population genetic structure. Mol Ecol Resour. 2022;22:602–11.
Wilson RE, Sage GK, Sonsthagen SA, Gravley MC, Menning DM, Talbot SL. Genomics of Arctic cod. OCS Study. Bureau of Ocean Energy Management. Report No.: BOEM 2017–066. 2017. https://pubs.er.usgs.gov/publication/70197204. Accessed 01.06.2022.
Breines R, Ursvik A, Nymark M, Johansen SD, Coucheron DH. Complete mitochondrial genome sequences of the Arctic Ocean codfishes Arctogadus glacialis and Boreogadus saida reveal oriL and tRNA gene duplications. Polar Biol. 2008;31:1245–52.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. Mitofinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020;20:892–905.
Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, et al. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2012;40:2833–45.
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Steenwyk JL, Buida TJ III, Labella AL, Li Y, Shen X-X, Rokas A. PhyKIT: a broadly applicable UNIX shell toolkit for processing and analyzing phylogenomic data. Bioinformatics. 2021;37:2325–31.
Lait LA. A mitogenomic study of four at-risk marine fish species: Atlantic wolffish, spotted wolffish, northern wolffish, and Atlantic cod, with special emphasis on the waters off Newfoundland and Labrador. Memorial University of Newfoundland; 2016. https://research.library.mun.ca/12490/. Accessed 25.08.2022.
Girgis HZ. Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics. 2015;16:227.