• Foyer CH, Lam H-M, Nguyen HT, Siddique KHM, Varshney RK, Colmer TD, et al. Neglecting legumes has compromised human health and sustainable food production. Nat Plants. 2016;2:16112.

    Article 
    PubMed 

    Google Scholar
     

  • Watson CA, Reckling M, Preissel S, Bachinger J, Bergkvist G, Kuhlman T, et al. Grain legume production and use in European agricultural systems. Adv Agron. 2017;144:235–303.

    Article 

    Google Scholar
     

  • Pilorgé E, Muel F. What vegetable oils and proteins for 2030? Would the protein fraction be the future of oil and protein crops? OCL. 2016;23:D402.

    Article 

    Google Scholar
     

  • Fehér A, Gazdecki M, Véha M, Szakály M, Szakály Z. A comprehensive review of the benefits of and the barriers to the switch to a plant-based diet. Sustainability. 2020. https://doi.org/10.3390/su12104136.

    Article 

    Google Scholar
     

  • Kurlovich BS. The history of lupin domestication. In: Kurlovich BS, editor. Lupins: geography, classification, genetic resources and breeding. St. Petersburg, Russia: Intan; 2002. pp. 147–64.


    Google Scholar
     

  • Lucas MM, Stoddard FL, Annicchiarico P, Frías J, Martínez-Villaluenga C, Sussmann D, et al. The future of lupin as a protein crop in Europe. Front Plant Sci. 2015;6:705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abraham EM, Ganopoulos I, Madesis P, Mavromatis A, Mylona P, Nianiou-Obeidat I, et al. The use of lupin as a source of protein in animal feeding: genomic tools and breeding approaches. Int J Mol Sci. 2019;20:851.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boukid F, Pasqualone A. Lupine (Lupinus spp.) proteins: characteristics, safety and food applications. Eur Food Res Technol. 2022;248:345–56.

    Article 
    CAS 

    Google Scholar
     

  • Prusinski J. White lupin (Lupinus albus L.) – nutritional and health values in human nutrition – a review. Czech J Food Sci. 2017;35:95–105.

    Article 
    CAS 

    Google Scholar
     

  • Pereira A, Ramos F, Sanches Silva A. Lupin (Lupinus albus L.) seeds: balancing the good and the bad and addressing future challenges. Molecules. 2022;27:8557.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boschin G, D’Agostina A, Annicchiarico P, Arnoldi A. The fatty acid composition of the oil from Lupinus albus cv. luxe as affected by environmental and agricultural factors. Eur Food Res Technol. 2007;225:769–76.

    Article 
    CAS 

    Google Scholar
     

  • Boschin G, D’Agostina A, Annicchiarico P, Arnoldi A. Effect of genotype and environment on fatty acid composition of Lupinus albus L. seed. Food Chem. 2008;108:600–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards AC, van Barneveld RJ. Lupins for livestock and fish. In: Gladstones JS, Atkins CA, Hamblin J, editors. Lupins as crop plants. Biology, production and utilization. New York: CAB International; 1998. pp. 385–411.


    Google Scholar
     

  • Papineau J, Huyghe C. Le lupin Doux Protéagineux. Paris: Editions France Agricole; 2004.


    Google Scholar
     

  • Szczepański A, Adamek-Urbańska D, Kasprzak R, Szudrowicz H, Śliwiński J, Kamaszewski M. Lupin: a promising alternative protein source for aquaculture feeds? Aquac Rep. 2022;26:101281.

    Article 

    Google Scholar
     

  • Annicchiarico P. Adaptation of cool-season grain legume species across climatically-contrasting environments of Southern Europe. Agron J. 2008;100:1647–54.

    Article 

    Google Scholar
     

  • Cernay C, Pelzer E, Makowski D. A global experimental dataset for assessing grain legume production. Sci Data. 2016;3:160084.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green AG, Oram RN. Variability for protein and oil quality in Lupinus albus. Anim Feed Sci Technol. 1983;9:271–82.

    Article 
    CAS 

    Google Scholar
     

  • Terigar BG, Balasubramanian S, Sabliov CM, Lima M, Boldor D. Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. J Food Eng. 2011;104:208–17.

    Article 
    CAS 

    Google Scholar
     

  • Annicchiarico P, Harzic N, Carroni AM. Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Res. 2010;119:114–24.

    Article 

    Google Scholar
     

  • Schwertfirm G, Schneider M, Haase F, Riedel C, Lazzaro M, Rege-Wehling, et al. Genome-wide association study revealed significant SNPs for anthracnose resistance, seed alkaloids and protein content in white lupin. Theor Appl Genet. 2024;137:155.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wink M. Quinolizidine alkaloids. In: Waterman P, editor. Methods in plant biochemistry. London: Academic; 1993. pp. 197–239.


    Google Scholar
     

  • Aniszewski T. Alkaloids – Secrets of life. Amsterdam: Elsevier; 2007.


    Google Scholar
     

  • Mancinotti D, Frick KM, Geu-Flores F. Biosynthesis of quinolizidine alkaloids in lupins: mechanistic considerations and prospects for pathway elucidation. Nat Prod Rep. 2022;39:1423.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wink M. Quinolizidine and pyrrolizidine alkaloid chemical ecology – A mini-review on their similarities and differences. J Chem Ecol. 2019;45:109–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frick KM, Kamphuis LG, Siddique KH, Singh KB, Foley RC. Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front Plant Sci. 2017;8:87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, Hogstrand C, et al. Scientific opinion on the risks for animal and human health related to the presence of Quinolizidine alkaloids in feed and food, in particular in lupins and lupin-derived products. EFSA J. 2019;17:5860.


    Google Scholar
     

  • ACNFP. Report on seeds from narrow leafed lupin, appendix IX. London: MAFF; 1996.


    Google Scholar
     

  • ANZFA. Lupin alkaloids in food. A toxicological review and risk assessment. Aust N Z Food Auth Tech Rep Ser. 2001;3:1–21.


    Google Scholar
     

  • FIRAG. Risk assessment of alkaloid occurrence in lupin seed. Federal Institute for Risk Assessment Germany; 2017.

  • Estivi L, Buratti S, Fusi D, Benedetti S, Rodríguez G, Brandolini A, et al. Alkaloid content and taste profile assessed by electronic tongue of Lupinus albus seeds debittered by different methods. J Food Compos Anal. 2022;114:104810.

    Article 
    CAS 

    Google Scholar
     

  • Keuth O, Humpf HU, Fürst P. Quinolizidine alkaloids in lupine flour and lupine products from the German retail market and risk assessment of the results regarding human health. Food Addit Contam Part Chem Anal Control Expo Risk Assess 2023;Apr 3:1–8.

  • Jacob I, Feuerstein U, Heinz M, Schott M, Urbatzka P. Evaluation of new breeding lines of white lupin with improved resistance to anthracnose. Euphytica. 2017;213:236.

    Article 

    Google Scholar
     

  • Muzquiz M, Cuadrado C, Ayet G, de la Cuadra C, Burbano C, Osagie A. Variation of alkaloid components of lupin seeds in 49 genotypes of Lupinus albus from different countries and locations. J Agric Food Chem. 1994;42:1447–50.

    Article 
    CAS 

    Google Scholar
     

  • Brand TS, Brandt DA. Alkaloid content of South African lupins (L. luteus, L. albus and L. angustifolius species) and determination thereof by near infra-red reflectance spectroscopy. S Afr J Anim Sci. 2000;30(Suppl 1):11–2.


    Google Scholar
     

  • Boschin G, Annicchiarico P, Resta D, D’Agostina A, Arnoldi A. Quinolizidine alkaloids in seeds of lupin genotypes from different origins. J Agric Food Chem. 2008;56:3657–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zafeiriou I, Polidoros AN, Baira E, Kasiotis KM, Machera K, Mylona PV. Mediterranean white lupin landraces as a valuable genetic reserve for breeding. Plants. 2021;10:2403.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madelou NA, Melliou E, Magiatis P. Quantitation of Lupinus spp. quinolizidine alkaloids by qNMR and accelerated debittering with a resin-based protocol. Molecules. 2024;29:582.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancinotti D, Czepiel K, Taylor JL, Golshadi Galehshahi H, Møller LA, Jensen MK, et al. The causal mutation leading to sweetness in modern white lupin cultivars. Sci Adv. 2023;9:eadg8866.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison JEM, Williams W. Genetical control of alkaloids in Lupinus albus. Euphytica. 1982;31:357–64.

    Article 
    CAS 

    Google Scholar
     

  • Święcicki W, Górny A, Barzyk P, Gawłowska M, Kaczmarek Z. Genetic analysis of alkaloid accumulation in seeds of white lupin (Lupinus albus L). Genetika. 2019;51:961–73.

    Article 

    Google Scholar
     

  • Osorio CE, Till BJ. A bitter-sweet story: unraveling the genes involved in quinolizidine alkaloid synthesis in Lupinus albus. Front Plant Sci. 2022;12:795091.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noffsinger SL, van Santen E. Evaluation of Lupinus albus L. germplasm for the southeastern USA. Crop Sci. 2005;45:1941–50.

    Article 

    Google Scholar
     

  • Annicchiarico P, Romani M, Pecetti L. White lupin variation for adaptation to severe drought stress. Plant Breed. 2018;137:782–9.

    Article 
    CAS 

    Google Scholar
     

  • Franguelli N, Cavalli D, Notario T, Pecetti L, Annicchiarico P. Frost tolerance improvement in pea and white lupin by a high-throughput phenotyping platform. Front Plant Sci. 2024;15:1490577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adhikari KN, Buirchell BJ, Thomas GJ, Sweetingham MW, Yang H. Identification of anthracnose resistance in Lupinus albus L. and its transfer from landraces to modern cultivars. Crop Pasture Sci. 2012;60:472–9.

    Article 

    Google Scholar
     

  • Tosoroni A, Di Vittori V, Nanni L, Musari E, Papalini S, Bitocchi E, et al. Recent advances in molecular tools and pre-breeding activities in white lupin (Lupinus albus). Plants. 2025;14:914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Von Baer E, Perez I. Quality standard propositions for commercial grain of white lupin (Lupinus albus). In: Proceedings of the 6th International Lupin Conference. Temuco, Chile: International Lupin Association; 1991. p 158–167.

  • Lin R, Renshaw D, Luckett D, Clements J, Yan G, Adhikari K, et al. Development of a sequence-specific PCR marker linked to the gene pauper conferring low-alkaloids in white lupin (Lupinus albus L.) for marker assisted selection. Mol Breed. 2009;23:153–61.

    Article 
    CAS 

    Google Scholar
     

  • Książkiewicz M, Nazzicari N, Yang H, Nelson MN, Renshaw D, Rychel S, et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci Rep. 2017;7:15335.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rychel S, Książkiewicz M. Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L). J Appl Genet. 2019;60:269–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hufnagel B, Soriano A, Taylor J, Divol F, Kroc M, Sanders H, et al. Pangenome of white lupin provides insights into the diversity of the species. Plant Biotechnol J. 2021;19:2532–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodés-Bachs C, Van der Fels-Klerx HJ. Impact of environmental factors on the presence of Quinolizidine alkaloids in lupins: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2023;40:757–69.

    Article 
    PubMed 

    Google Scholar
     

  • Cowling WA, Huyghe C, Swiecicki W. Lupin breeding. In: Gladstones JS, Atkins CA, Hamblin J, editors. Lupins as crop plants. Biology, production and utilization. New York: CAB International; 1998. pp. 93–120.


    Google Scholar
     

  • Annicchiarico P, Manunza P, Arnoldi A, Boschin G. Quality of Lupinus albus L. (white lupin) seed: extent of genotypic and environmental effects. J Agric Food Chem. 2014;62:6539–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME. Plant breeding with genomic selection: gain per unit time and cost. Crop Sci. 2010;50:1681–90.

    Article 

    Google Scholar
     

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annicchiarico P, Nazzicari N, Ferrari B, Harzic N, Carroni AM, Romani M, et al. Genomic prediction of grain yield in contrasting environments for white lupin genetic resources. Mol Breed. 2019;39:142.

    Article 
    CAS 

    Google Scholar
     

  • Pecetti L, Annicchiarico P, Crosta M, Notario T, Ferrari B, Nazzicari N. White lupin drought tolerance: genetic variation, trait genetic architecture, and genome-enabled prediction. Int J Mol Sci. 2023;24:2351.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rychel-Bielska S, Nazzicari N, Plewiński P, Bielski W, Annicchiarico P, Książkiewicz M. Development of PCR-based markers and whole-genome selection model for anthracnose resistance in white lupin (Lupinus albus L). J Appl Genet. 2020;61:531–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annicchiarico P, Nazzicari N, Ferrari B. Genetic and genomic resources in white lupin and the application of genomic selection. In: Singh KB, Kamphuis LG, Nelson MN, editors. The lupin genome. Cham, Switzerland: Springer Nature Switzerland AG; 2020. pp. 139–49.

    Chapter 

    Google Scholar
     

  • Annicchiarico P, de Buck A, Vlachostergios DN, Heupink D, Koskosidis A, Nazzicari N, et al. White lupin adaptation to environments with calcareous soils: phenotypic variation and genome-enabled prediction. Plants. 2023;12:1139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buirchell BJ. Cowling WA. Genetic resources in lupins. In: Gladstones JS, Atkins CA, Hamblin J, editors. Lupins as crop plants. Biology, production and utilization. New York: CAB International; 1998. p. 41–66.


    Google Scholar
     

  • Petterson DS. Composition and food uses. In: Gladstones JS, Atkins CA, Hamblin J, editors. Lupins as crop plants. Biology, production and utilization. New York: CAB International; 1998. pp. 353–84.


    Google Scholar
     

  • Rybiński W, Święcicki W, Bocianowski J, Börner A, Starzycka-Korbas E, Starzycki M. Variability of fat content and fatty acids profiles in seeds of a Polish white lupin (Lupinus albus L.) collection. Genet Resour Crop Evol. 2018;65:417–31.

    Article 

    Google Scholar
     

  • Green AG, Oram RN, Read BJ. Genetic variation for seed yield, protein content, oil content, and seed weight in Lupinus albus. Aust J Agric Res. 1977;28:785–93.

    Article 

    Google Scholar
     

  • Jimenez MD, Cubero JI, de Haro A. Genetic and environmental variability in protein, oil and fatty acid composition in high-alkaloid Hite lupin (Lupinus albus). J Sci Food Agric. 1991;55:27–35.

    Article 

    Google Scholar
     

  • Cowling WA, Tarr A. (2004) Effect of genotype and environment on seed quality in sweet narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric Res. 2004;55:745–751.

  • Beyer H, Schmalenberg AK, Jansen G, Jürgens HU, Uptmoor R, Broer I, et al. Evaluation of variability, heritability and environmental stability of seed quality and yield parameters of L. angustifolius. Field Crops Res. 2015;174:40–7.

    Article 

    Google Scholar
     

  • Wink M, Carsten Meissner C, Witte L. Patterns of Quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochem. 1995;38:139–53.

    Article 
    CAS 

    Google Scholar
     

  • Kroc M, Rybiński W, Wilczura P, Kamel K, Kaczmarek Z, Barzyk P, et al. Quantitative and qualitative analysis of alkaloids composition in the seeds of a white lupin (Lupinus albus L.) collection. Genet Resour Crop Evol. 2017;64:1853–60.

    Article 
    CAS 

    Google Scholar
     

  • Namdar D, Mulder PPJ, Ben-Simchon E, Hacham Y, Basheer L, Cohen O, et al. New analytical approach to Quinolizidine alkaloids and their assumed biosynthesis pathways in lupin seeds. Toxins. 2024;16:163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alkemade JA, Nazzicari N, Messmer MM, Annicchiarico P, Ferrari B, Voegele RT, et al. Genome-wide association study reveals white lupin candidate gene involved in anthracnose resistance. Theor Appl Genet. 2022;135:1011–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rychel-Bielska S, Bielski W, Surma A, Annicchiarico P, Belter J, Kozak B, et al. A GWAS study highlights significant associations between a series of indels in a FLOWERING LOCUS T gene promoter and flowering time in white lupin (Lupinus albus L). BMC Plant Biol. 2024;24:722.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annicchiarico P, Harzic N, Huyghe C, Carroni AM. Ecological classification of white lupin landrace genetic resources. Euphytica. 2011;180:17–25.

    Article 

    Google Scholar
     

  • Zhang J, Song Q, Cregan PB, Jiang GL. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet. 2016;129:117–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, et al. Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci. 2016;7:1666.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burstin J, Salloignon P, Chabert-Martinello M, Magnin-Robert J-B, Siol M, Jacquin F, et al. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genomics. 2015;16:105.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crosta M, Romani M, Nazzicari N, Ferrari B, Annicchiarico P. Genomic prediction and allele mining of agronomic and morphophysiological traits in pea germplasm collections. Front Plant Sci. 2023;14:1320506.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng X, Cao J, Gao C, Gao W, Yan S, Yao H, et al. Identification of the wheat C3H gene family and expression analysis of candidates associated with seed dormancy and germination. Plant Physiol Biochem. 2020;156:524–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taheri H. Transcriptional modulation of structural and regulatory genes involved in isoprene biosynthesis and their relevance to oil yield and menthol content in peppermint (Mentha piperita L.) upon MeJA and GA 3 treatments. Russ J Plant Physiol. 2019;66:503–8.

    Article 
    CAS 

    Google Scholar
     

  • Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, et al. Biosynthesis and the roles of plant sterols in development and stress responses. Int J Mol Sci. 2022;23:2332.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das KK, Mohapatra A, George AP, Chavali S, Witzel K, Ramireddy E. The proteome landscape of the root cap reveals a role for the jacalin-associated lectin JAL10 in the salt-induced endoplasmic reticulum stress pathway. Plant Commun. 2023;4:100726.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu G, Ma H, Nei M, Kong H. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc Natl Acad Sci U S A. 2009;106:835–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annicchiarico P, Thami Alami I. Enhancing white lupin (Lupinus albus L.) adaptation to calcareous soils through lime-tolerant plant germplasm and Bradyrhizobium strains. Plant Soil. 2012;350:134–44.

    Article 

    Google Scholar
     

  • Annicchiarico P, Romani M, Barzaghi S, Ferrari B, Carroni AM, Ruda P, et al. Detection and exploitation of white lupin (Lupinus albus L.) genetic variation for gamma-conglutin. J Appl Bot Food Qual. 2016;89:212–6.

    CAS 

    Google Scholar
     

  • Wink M, Hartmann T. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Zeitschrift für Pflanzenphysiologie. 1981;102:337–44.

    Article 
    CAS 

    Google Scholar
     

  • Kirsten WJ, Hesselius GU. Rapid, automatic, high capacity Dumas determination of nitrogen. Microchem J. 1983;28:529–47.

    Article 
    CAS 

    Google Scholar
     

  • AOAC. Official Method of Analysis, Method 920.39, Fat (crude) or ether extract in animal feed. 18th edition. Gaithersburg, MD: AOAC International; 2005.

  • Ferrari B, Barzaghi S, Annicchiarico P. Development of NIRS calibrations for seed content of lipids and proteins in contrasting white lupin germplasm. In: Chu X, Guo L, Huang Y, Yuan H, editors. Sense the Real Change: Proceedings of the 20th International Conference on Near Infrared. Singapore: Chemical Industry Press; 2022. pp. 132–6.

  • Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969;11:137–48.

    Article 

    Google Scholar
     

  • Williams P. The RPD statistic: a tutorial note. NIR News. 2014;25:22–6.

    Article 

    Google Scholar
     

  • DeLacy IH, Basford KE, Cooper M, Bull IK, McLaren CG. Analysis of multi-environment trials – An historical perspective. In: Cooper M, Hammer GL, editors. Plant adaptation and crop improvement. Wallingford, UK: CABI; 1996. pp. 39–124.


    Google Scholar
     

  • Itoh Y, Yamada Y. Relationships between genotype × environment interaction and genetic correlation of the same trait measured in different environments. Theor Appl Genet. 1990;80:11–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robertson A. The sampling variance of the genetic correlation coefficient. Biometrics. 1959;15:469–85.

    Article 

    Google Scholar
     

  • SAS Institute. SAS/STAT 9.2 user’s guide. Cary, NC: SAS Institute; 2008.


    Google Scholar
     

  • Hufnagel B, Marques A, Soriano A, Marquès L, Divol F, Doumas P, et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat Commun. 2020;11:492.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazzicari N, Franguelli N, Ferrari B, Pecetti L, Annicchiarico P. The effect of genome parametrization and SNP marker subsetting on genomic selection in autotetraploid alfalfa. Genes. 2024;15:449.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nazzicari N, Biscarini F, Cozzi P, Brummer EC, Annicchiarico P. Marker imputation efficiency for genotyping-by-sequencing data in rice (Oryza sativa) and alfalfa (Medicago sativa). Mol Breed. 2016;36:69.

    Article 

    Google Scholar
     

  • Breiman L. Random forests. Mach Learn. 2001;45:5–32.

    Article 

    Google Scholar
     

  • Stekhoven DJ, Bühlmann P. Missforest–non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yendle PW, MacFie HJH. Discriminant principal components analysis. J Chemometrics. 1989;3:589–600.

    Article 
    CAS 

    Google Scholar
     

  • Jombart T, Ahmed. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One. 2016;11:e0156744.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience. 2019;8:154.

    Article 

    Google Scholar
     

  • Wang J, Zhang Z. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genomics Proteomics Bioinf. 2021;19:629–40.

    Article 

    Google Scholar
     

  • Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:1–12.

    Article 

    Google Scholar
     

  • Nazzicari N, Biscarini F. Stacked kinship CNN vs. GBLUP for genomic predictions of additive and complex continuous phenotypes. Sci Rep. 2022;12:19889.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Xu Y, Hu Z, Xu C. Genomic selection methods for crop improvement: current status and prospects. Crop J. 2018;6:330–40.

    Article 

    Google Scholar