Mahima, Kumar VA, Ruchi T, K K, Sandip C, Rajib D, et al. Nutraceuticals from fruits and vegetables at a glance: a review. J Biol Sci. 2013;13(2):38–47.
Tian YQ, Gao LH. Theory and technology for facility cultivation of High-quality tomato. China Vegetables. 2021(02):30–40.
Zhang JJ, Duan ZQ. Preliminary study on classification & grading standards and causes & hazards of secondary salinization of facility vegetable soils. Soils. 2011;43(03):361–66.
Ikram U, Mao H, Zhang C, Qaiser J, Ahmad A. Optimization of irrigation and nutrient concentration based on economic returns, substrate salt accumulation and water use efficiency for tomato in greenhouse. Arch Agron Soil Sci. 2017;63(12):1748–62.
Rasool G, Guo X, Wang Z, Ali MU, Chen S, Zhang S et al. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric Water Manag. 2020;239.
Chen SQ, Jiang MT. Causes, harm and control measures of secondary salinization of greenhouse soil. Liaoning Chem Ind. 2011;43(03):361–6.
Zhao Q, Chen HZ. Effects of NaCl stress on germination characteristics of safflower seeds. Biotic Resour. 2024(06):575–81.
Wang B, Pang SQ, Ma XH. The effect of different concentrations of salt stress on the germination of processed tomato seeds. 2015 Academic Annual Meeting of the Chinese Horticultural Society. 2015;138.
Li Y, Sun X, He K, Jin X, Leng J, Huang Q, et al. Analysis of salt tolerance of ‘golden gold’ Peach varieties. Agronomy. 2024;14(12):3034.
Manjul MML, VC DI. Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae. 2020;6(4):90.
Hong FS, Qu CX, Wang L. Cerium improves growth of maize seedlings via alleviating morphological structure and oxidative damages of leaf under different stresses. J Agric Food Chem. 2017;65(41):9022–30.
Xing D, Chen L, Wu Y, Zwiazek JJ. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci Hortic. 2021;276:109763. https://doi.org/10.1016/j.scienta.2020.109763.
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–50.
Li MQ, Li JY, Wei XH, Zhu WJ. Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy. Int J Agric Biol Eng. 2017;10(3):194–205.
Gao HY, Mao HP, Ullah I. Analysis of metabolomic changes in lettuce leaves under low nitrogen and phosphorus deficiencies stresses. Agriculture. 2020;10(9):406.
Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, et al. Pendrin Function and Regulation in Xenopus Oocytes. Cell Physiol Biochem. 2011;28(3):435–50.
Xie QZ, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murineSlc26a6 anion exchanger: functional comparison withSlc26a1. Am J Physiol Renal Physiol. 2002;283(4):F826-38.
Jean-Baptiste V, Denis J, Francois A, Jean-Philippe G. Molecular and functional characterization ofSlC26a11, a sodium-independent sulfate transporter from high endothelial venules. FASEB Journal: Official Publication Federation Am Soc Experimental Biology. 2003;17(8):890–92.
Michele F, Radiana C, Matteo M, Anna T, Sphaeropleales. Plants (Basel). 2022;11(2):223.
Zhang H, Hao X, Zhang J, Wang L, Wang Y, Li N, et al. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium. Protoplasma. 2022;259(1):127–40.
Yuan ZQ, Long WX, Hu HF, Liang T, Luo XY, Hu ZL, et al. Genome-wide identification and expansion patterns of SULTR gene family in gramineae crops and their expression profiles under abiotic stress in Oryza sativa. Genes. 2021;12(5):634.
Parviz H, Soosan H, Sahar F, Sezai E, Freddy M. Genome-wide characterization of the sulfate transporter gene family in oilseed crops: camelina sativa and brassica Napus. Plants (Basel). 2023;12(3):628.
Hu DW, Li MZ, Zhao FJ, Huang XY. The vacuolar molybdate transporter OsMOT1;2 controls molybdenum remobilization in rice. Front Plant Sci. 2022;13:863816.
Niklas WJ, Rieke MM, Maria B, Rebekka B, HV G. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis. Commun Biol. 2023;6(1):801.
Guilan D, Tsuneo H, Takehiro K, Hiroki M, Fabien L, Shusei S, et al. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. Plant Journal: Cell Mol Biology. 2017;90(6):1108–19.
Manuel T, Angel L, Emanuel S, Aurora G, Emilio F. A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci U S A. 2007;104(50):20126–30.
Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, et al. Variation in molybdenum content across broadly distributed populations of Arabidopsis Thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 2008;4(2):e1000004.
Günter S, R MR, W RM. Molybdenum cofactors, enzymes and pathways. Nature. 2009;460(7257):839–47.
Schwarz G. Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci. 2005;62(23):2792–810.
Nyhan WL. Disorders of purine and pyrimidine metabolism. Mol Genet Metab. 2005;86(1–2):25–33.
Hajime T, Junpei T, Hideki T, Akiko W, Nakako S, Toru F. An Arabidopsis Thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci U S A. 2007;104(47):18807–12.
Huang XY, Liu H, Zhu YF, Pinson Shannon RM, Lin HX, Guerinot ML, et al. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytol. 2019;221(4):1983–97.
Ide Y, Kusano M, Oikawa A, Fukushima A, Tomatsu H, Saito K et al. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in arabidopsis thaliana. J Exp Bot. 2011 2011;62(4):1483-97.
Kisker C, Schindelin H, Rees DC. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem. 1997;66:233–67.
Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun. 2019;10(1):1–12.
Silvia B, Joana T, Levi Y, Charlotte P. Adaptation to coastal soils through pleiotropic boosting of ion and stress hormone levels in wild Arabidopsis Thaliana. New Phytol. 2021;232(1):208–20.
X L, I M, L H, ZJ K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001;13(9):2063–83.
Jiao M, He W, Ouyang Z, Yu Q, Zhang J, Qin Q, et al. Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis. Sci Adv. 2025;11(3):eadq9686.
Zhou X, Huang J, Gan Y, Li Z, Su L, He Z, et al. Transcriptome mechanisms of tomato seedlings induced by low-red to far-red light ratio under calcium nitrate stress. Int J Mol Sci. 2023;24(4):3738. https://doi.org/10.3390/ijms24043738.
Manuel T, Alejandro C, Aurora G, Emilio F, Ángel L. Molybdenum metabolism in plants. Metallomics Integr Biometal Sci. 2013;5(9):1191–203.
Manuel T, Patricia G, Javier L, Jiang QW, Juan SMK. Medicago truncatula molybdate transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. New Phytol. 2017;216(4):1223–35.
Zhu W, Zhang X, Geng XY, Zhang Z, Chen YL, Wei HH, et al. Morphological and physiological characteristics of rice roots under combined Salinity-Drought stress and their relationships with yield formation. Chin J Rice Sci. 2023;37(06):617–27.
Yuan LY, Shu S, Sun J, Guo SR, Tezuka T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res. 2012;112(3):205–14.
Cao J, Xiao CY, Liu T, Zhang Q, Lu XM. Effect of TA on growth of tomato seedling under calcium nitrate stress. Mod Agricultural Sci Technol. 2021;50(09):111–14.
Wilkins K, Matthus E, Swarbreck S, Davies J. Calcium-mediated abiotic stress signaling in roots. Front Plant Sci. 2016;7:1296.
Zhou ZN, Shi XM, Yuan YH, Guo SR. Effects of exogenous spermidine on photosynthesis and activities of antioxidant enzymes in tomato seedlings under Ca(NO3)2 stress. Acta Bot Boreali-Occident Sin. 2012;32(03):498–504.
Hamid A, Azar S. Functional characterization of a manganese superoxide dismutase from avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance. Sci Rep. 2024;14(1):406.
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A stress-associated protein, Ptsap 13, from Populus trichocarpa provides tolerance to salt stress. Int J Mol Sci. 2019;20(22):5782.
Feng S, Yao Y, Wang B, Li Y, Li L, Bao A. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. Plant Cell Rep. 2024;43(1):5.
Pooja S, Kumar CK, Nivedita C, Shweta G, Mamatamayee S, Boddu T, et al. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front Plant Sci. 2022;13:1006617.
Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. Trends Plant Sci. 2022;27(1):39–55.
Rajtilak M, Boubker B, Maegan ATS, Rakesh G, Stephanie M. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci. 2016;7:78.
Au-aff OA. Genome-wide identification and cadmium induced expression profiling of sulfate transporter (sultr) genes in sorghum (sorghum bicolor l). Biometals: Int J Role Metal Ions Biology Biochem Med. 2018;31(1):91–105.
Li ZH, Liu R, Zhang XX, Zhao XD, Liu MT, Chai Q. Effects of exogenous abscisic acid on enhancing salt tolerance of Festuca arundinacea. North Hortic. 2022;07:66–75.
Fei SM. Physiology, biochemistry and whole transcriptomeanalysis of cabbage leaves under drought stresstreated with exogenous ABA[D]. Xian: Northwest A&F University; 2023.
Bipul S, Pratim B, Abir D, Sayan P, Mirza H, Kumar AM. Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism. Plant Physiol Biochem PPB. 2023;202:107980.
Min-Jie C, Zhen W, Qing Z, Jie-Li M, Anna S, Markus W, et al. Sulfate availability affects Aba levels and germination response to Aba and salt stress in Arabidopsis Thaliana. Plant Journal: Cell Mol Biology. 2014;77(4):604–15.
Zhen C, Ping-Xia Z, Zi-Qing M, Guo-Feng Q, Zhen W, Yang Y, et al. Sultr3s function in Chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiol. 2019;180(1):593–604.
Zhao HH. Effects of exogenous glutathione on several physiological and biochemical indices in tomato seedlings under low nitrogen conditions[D]. Fuzhou: Fujian Agriculture And Forestry University; China. 2023.
Wollers S, Heidenreich T, Zarepour M, Zachmann D, Kraft C, Zhao Y, et al. Binding of sulfurated molybdenum cofactor to the c-terminal domain of aba3 from Arabidopsis Thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem. 2008;283(15):9642–50.
Sundas B, Vural UV, Hala R, Nisar A, Rainer W, Dietmar G, et al. Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. Plant Cell. 2018;30(12):2973–87.
Bishop GJ, Yokota T. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 2001;42(2):114–20.
Zhang Y, Chen HT, Li S, Li Y, Kumar KM, Li B, et al. Comparative physiological and proteomic analyses reveal the mechanisms of brassinolide-mediated tolerance to calcium nitrate stress in tomato. Front Plant Sci. 2021;12:724288.
Victor P, Bulgakov TV, Avramenko. Linking brassinosteroid and ABA signaling in the context of stress acclimation. Int J Mol Sci. 2020;21:14.
Farooq MA, Haq MZU, Zhang L, Wu S, Mushtaq N, Tahir H, et al. Transcriptomic insights into salt stress response in two pepper species: the role of MAPK and plant hormone signaling pathways. Int J Mol Sci. 2024;25(17):9355.
Zhang C, Ma T, Luo W, Xu J, Liu J, Wan D. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress. Genes. 2015;6(3):901–17.
Geng G, Lv CH, Stevanato P, Li RR, Liu H, Yu LH, et al. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci. 2019;20(23):5910.
Yan HF, Nie YT, Cui KL, Sun J. Integrative transcriptome and metabolome profiles reveal common and unique pathways involved in seed initial imbibition under artificial and natural salt stresses during germination of halophyte quinoa. Front Plant Sci. 2022;13:853326.
Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S. Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil. 2008;302(1–2):33–43.
Mu HM, Du XJ, Zhang XS, Zhang M, Cao X. Study on plants mybtranscription factors regulate biological synthesis of phenylpropanoid metabolism. North Hortic. 2015(24):171–74.
Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, et al. Comparative proteomic analysis of tolerant and sensitive varieties reveals that phenylpropanoid biosynthesis contributes to salt tolerance in mulberry. Int J Mol Sci. 2021;22(17):9402.
Chen CX, Liu Y, Luo M, Yang JW, Chen YM, Wang RH, et al. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. Int J Mol Sci. 2022;23(4):2272.
Ortega-Garcia F, Peragon J. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the Olive tree (olea Europaea l. Cv. Picual). J Sci Food Agric. 2009;89(9):1565–73.
Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, et al. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants. 2023;12(16):3003.
Jiang SX, Li DL. Research progress of mitogen-activated protein kinase signal transduction pathway. Acta Bot Boreali-Occident Sin. 2016;36(06):1278–84.
Singh A, Kumar A, Yadav S, Singh IK. Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene. 2019;18:100173.
Qaiser J, Yanyou W, Deke X, Ahmad A, Ikram U, Muhammad Z. Re-watering: an effective measure to recover growth and photosynthetic characteristics in salt-stressed brassica napus L. Chil J Agric Res. 2017;77(1):78–86.
Li ZG, Gong M. Assessment methods for comprehensive and design-based experiments in plant physiology. Plant Physiol J. 2008;03:551–3.
Cheng Y, Chen L, Mi YH, Duan HP, Cha YS, Shao JL, et al. Comparative study on various methods for determination of activity of antioxidant enzymes in rice. Acta Agriculturae Jiangxi. 2018;30(02):108–11.
Zhou X, Ye D, Tang Y, Gan Y, Huang J, Bian Z, et al. LowR:FR light ratio enhances calcium nitrate resistance and stomatal movement in tomato seedlings by regulating H2 O2 accumulation. Hortic Plant J. 2025;11(2):693–705.
Wang YL. Experimental guide to plant physiology. Beijing: China Agricultural Press. Li QH, Shi W. Bei; 2014. p. 286–7.
Jiang TC. Determination of sulfur content in plants by ICP-aes. Chem Anal Meterage. 2007;16(02):51–2.
Li ZG. Quantification of hydrogen sulfide concentration using methylene blue and 5,5’-dithiobis (2-nitrobenzoic acid) methods in plants. Methods Enzymol. 2015;554:101–10.
Shen Z, Zhang YH, Zhang L, Li Y, Sun YD, Li ZY. Changes in the distribution of endogenous hormones in phyllostachys Edulis ‘pachyloen’ during bamboo shooting. PLoS ONE. 2020;15:12.