• Mahima, Kumar VA, Ruchi T, K K, Sandip C, Rajib D, et al. Nutraceuticals from fruits and vegetables at a glance: a review. J Biol Sci. 2013;13(2):38–47.

    Article 

    Google Scholar
     

  • Tian YQ, Gao LH. Theory and technology for facility cultivation of High-quality tomato. China Vegetables. 2021(02):30–40.

  • Zhang JJ, Duan ZQ. Preliminary study on classification & grading standards and causes & hazards of secondary salinization of facility vegetable soils. Soils. 2011;43(03):361–66.

    CAS 

    Google Scholar
     

  • Ikram U, Mao H, Zhang C, Qaiser J, Ahmad A. Optimization of irrigation and nutrient concentration based on economic returns, substrate salt accumulation and water use efficiency for tomato in greenhouse. Arch Agron Soil Sci. 2017;63(12):1748–62.

    Article 

    Google Scholar
     

  • Rasool G, Guo X, Wang Z, Ali MU, Chen S, Zhang S et al. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric Water Manag. 2020;239.

  • Chen SQ, Jiang MT. Causes, harm and control measures of secondary salinization of greenhouse soil. Liaoning Chem Ind. 2011;43(03):361–6.


    Google Scholar
     

  • Zhao Q, Chen HZ. Effects of NaCl stress on germination characteristics of safflower seeds. Biotic Resour. 2024(06):575–81.

  • Wang B, Pang SQ, Ma XH. The effect of different concentrations of salt stress on the germination of processed tomato seeds. 2015 Academic Annual Meeting of the Chinese Horticultural Society. 2015;138.

  • Li Y, Sun X, He K, Jin X, Leng J, Huang Q, et al. Analysis of salt tolerance of ‘golden gold’ Peach varieties. Agronomy. 2024;14(12):3034.

    Article 
    CAS 

    Google Scholar
     

  • Manjul MML, VC DI. Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae. 2020;6(4):90.

    Article 

    Google Scholar
     

  • Hong FS, Qu CX, Wang L. Cerium improves growth of maize seedlings via alleviating morphological structure and oxidative damages of leaf under different stresses. J Agric Food Chem. 2017;65(41):9022–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing D, Chen L, Wu Y, Zwiazek JJ. Leaf physiological impedance and elasticity modulus in Orychophragmus violaceus seedlings subjected to repeated osmotic stress. Sci Hortic. 2021;276:109763. https://doi.org/10.1016/j.scienta.2020.109763.

  • Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li MQ, Li JY, Wei XH, Zhu WJ. Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy. Int J Agric Biol Eng. 2017;10(3):194–205.


    Google Scholar
     

  • Gao HY, Mao HP, Ullah I. Analysis of metabolomic changes in lettuce leaves under low nitrogen and phosphorus deficiencies stresses. Agriculture. 2020;10(9):406.

    Article 
    CAS 

    Google Scholar
     

  • Reimold FR, Heneghan JF, Stewart AK, Zelikovic I, Vandorpe DH, Shmukler BE, et al. Pendrin Function and Regulation in Xenopus Oocytes. Cell Physiol Biochem. 2011;28(3):435–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie QZ, Welch R, Mercado A, Romero MF, Mount DB. Molecular characterization of the murineSlc26a6 anion exchanger: functional comparison withSlc26a1. Am J Physiol Renal Physiol. 2002;283(4):F826-38.

    Article 
    PubMed 

    Google Scholar
     

  • Jean-Baptiste V, Denis J, Francois A, Jean-Philippe G. Molecular and functional characterization ofSlC26a11, a sodium-independent sulfate transporter from high endothelial venules. FASEB Journal: Official Publication Federation Am Soc Experimental Biology. 2003;17(8):890–92.


    Google Scholar
     

  • Michele F, Radiana C, Matteo M, Anna T, Sphaeropleales. Plants (Basel). 2022;11(2):223.


    Google Scholar
     

  • Zhang H, Hao X, Zhang J, Wang L, Wang Y, Li N, et al. Genome-wide identification of SULTR genes in tea plant and analysis of their expression in response to sulfur and selenium. Protoplasma. 2022;259(1):127–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan ZQ, Long WX, Hu HF, Liang T, Luo XY, Hu ZL, et al. Genome-wide identification and expansion patterns of SULTR gene family in gramineae crops and their expression profiles under abiotic stress in Oryza sativa. Genes. 2021;12(5):634.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parviz H, Soosan H, Sahar F, Sezai E, Freddy M. Genome-wide characterization of the sulfate transporter gene family in oilseed crops: camelina sativa and brassica Napus. Plants (Basel). 2023;12(3):628.


    Google Scholar
     

  • Hu DW, Li MZ, Zhao FJ, Huang XY. The vacuolar molybdate transporter OsMOT1;2 controls molybdenum remobilization in rice. Front Plant Sci. 2022;13:863816.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niklas WJ, Rieke MM, Maria B, Rebekka B, HV G. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis. Commun Biol. 2023;6(1):801.

    Article 

    Google Scholar
     

  • Guilan D, Tsuneo H, Takehiro K, Hiroki M, Fabien L, Shusei S, et al. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. Plant Journal: Cell Mol Biology. 2017;90(6):1108–19.

    Article 

    Google Scholar
     

  • Manuel T, Angel L, Emanuel S, Aurora G, Emilio F. A high-affinity molybdate transporter in eukaryotes. Proc Natl Acad Sci U S A. 2007;104(50):20126–30.

    Article 

    Google Scholar
     

  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, et al. Variation in molybdenum content across broadly distributed populations of Arabidopsis Thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 2008;4(2):e1000004.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Günter S, R MR, W RM. Molybdenum cofactors, enzymes and pathways. Nature. 2009;460(7257):839–47.

    Article 

    Google Scholar
     

  • Schwarz G. Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci. 2005;62(23):2792–810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyhan WL. Disorders of purine and pyrimidine metabolism. Mol Genet Metab. 2005;86(1–2):25–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajime T, Junpei T, Hideki T, Akiko W, Nakako S, Toru F. An Arabidopsis Thaliana high-affinity molybdate transporter required for efficient uptake of molybdate from soil. Proc Natl Acad Sci U S A. 2007;104(47):18807–12.

    Article 

    Google Scholar
     

  • Huang XY, Liu H, Zhu YF, Pinson Shannon RM, Lin HX, Guerinot ML, et al. Natural variation in a molybdate transporter controls grain molybdenum concentration in rice. New Phytol. 2019;221(4):1983–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ide Y, Kusano M, Oikawa A, Fukushima A, Tomatsu H, Saito K et al. Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in arabidopsis thaliana. J Exp Bot. 2011 2011;62(4):1483-97.

  • Kisker C, Schindelin H, Rees DC. Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem. 1997;66:233–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan H, Xu W, Xie J, Gao Y, Wu L, Sun L, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun. 2019;10(1):1–12.


    Google Scholar
     

  • Silvia B, Joana T, Levi Y, Charlotte P. Adaptation to coastal soils through pleiotropic boosting of ion and stress hormone levels in wild Arabidopsis Thaliana. New Phytol. 2021;232(1):208–20.

    Article 

    Google Scholar
     

  • X L, I M, L H, ZJ K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001;13(9):2063–83.


    Google Scholar
     

  • Jiao M, He W, Ouyang Z, Yu Q, Zhang J, Qin Q, et al. Molybdate uptake interplay with ROS tolerance modulates bacterial pathogenesis. Sci Adv. 2025;11(3):eadq9686.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Huang J, Gan Y, Li Z, Su L, He Z, et al. Transcriptome mechanisms of tomato seedlings induced by low-red to far-red light ratio under calcium nitrate stress. Int J Mol Sci. 2023;24(4):3738. https://doi.org/10.3390/ijms24043738.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manuel T, Alejandro C, Aurora G, Emilio F, Ángel L. Molybdenum metabolism in plants. Metallomics Integr Biometal Sci. 2013;5(9):1191–203.

    Article 

    Google Scholar
     

  • Manuel T, Patricia G, Javier L, Jiang QW, Juan SMK. Medicago truncatula molybdate transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. New Phytol. 2017;216(4):1223–35.

    Article 

    Google Scholar
     

  • Zhu W, Zhang X, Geng XY, Zhang Z, Chen YL, Wei HH, et al. Morphological and physiological characteristics of rice roots under combined Salinity-Drought stress and their relationships with yield formation. Chin J Rice Sci. 2023;37(06):617–27.

    CAS 

    Google Scholar
     

  • Yuan LY, Shu S, Sun J, Guo SR, Tezuka T. Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in cucumis sativus L. under Ca(NO3)2 stress. Photosynth Res. 2012;112(3):205–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao J, Xiao CY, Liu T, Zhang Q, Lu XM. Effect of TA on growth of tomato seedling under calcium nitrate stress. Mod Agricultural Sci Technol. 2021;50(09):111–14.

  • Wilkins K, Matthus E, Swarbreck S, Davies J. Calcium-mediated abiotic stress signaling in roots. Front Plant Sci. 2016;7:1296.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou ZN, Shi XM, Yuan YH, Guo SR. Effects of exogenous spermidine on photosynthesis and activities of antioxidant enzymes in tomato seedlings under Ca(NO3)2 stress. Acta Bot Boreali-Occident Sin. 2012;32(03):498–504.


    Google Scholar
     

  • Hamid A, Azar S. Functional characterization of a manganese superoxide dismutase from avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance. Sci Rep. 2024;14(1):406.

    Article 

    Google Scholar
     

  • Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A stress-associated protein, Ptsap 13, from Populus trichocarpa provides tolerance to salt stress. Int J Mol Sci. 2019;20(22):5782.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng S, Yao Y, Wang B, Li Y, Li L, Bao A. Flavonoids are involved in salt tolerance through ROS scavenging in the halophyte Atriplex canescens. Plant Cell Rep. 2024;43(1):5.

    Article 
    CAS 

    Google Scholar
     

  • Pooja S, Kumar CK, Nivedita C, Shweta G, Mamatamayee S, Boddu T, et al. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front Plant Sci. 2022;13:1006617.

  • Alvarez ME, Savouré A, Szabados L. Proline metabolism as regulatory hub. Trends Plant Sci. 2022;27(1):39–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajtilak M, Boubker B, Maegan ATS, Rakesh G, Stephanie M. Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci. 2016;7:78.


    Google Scholar
     

  • Au-aff OA. Genome-wide identification and cadmium induced expression profiling of sulfate transporter (sultr) genes in sorghum (sorghum bicolor l). Biometals: Int J Role Metal Ions Biology Biochem Med. 2018;31(1):91–105.

    Article 

    Google Scholar
     

  • Li ZH, Liu R, Zhang XX, Zhao XD, Liu MT, Chai Q. Effects of exogenous abscisic acid on enhancing salt tolerance of Festuca arundinacea. North Hortic. 2022;07:66–75.

    CAS 

    Google Scholar
     

  • Fei SM. Physiology, biochemistry and whole transcriptomeanalysis of cabbage leaves under drought stresstreated with exogenous ABA[D]. Xian: Northwest A&F University; 2023.

  • Bipul S, Pratim B, Abir D, Sayan P, Mirza H, Kumar AM. Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism. Plant Physiol Biochem PPB. 2023;202:107980.

    Article 

    Google Scholar
     

  • Min-Jie C, Zhen W, Qing Z, Jie-Li M, Anna S, Markus W, et al. Sulfate availability affects Aba levels and germination response to Aba and salt stress in Arabidopsis Thaliana. Plant Journal: Cell Mol Biology. 2014;77(4):604–15.

    Article 

    Google Scholar
     

  • Zhen C, Ping-Xia Z, Zi-Qing M, Guo-Feng Q, Zhen W, Yang Y, et al. Sultr3s function in Chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiol. 2019;180(1):593–604.

    Article 

    Google Scholar
     

  • Zhao HH. Effects of exogenous glutathione on several physiological and biochemical indices in tomato seedlings under low nitrogen conditions[D]. Fuzhou: Fujian Agriculture And Forestry University; China. 2023.

  • Wollers S, Heidenreich T, Zarepour M, Zachmann D, Kraft C, Zhao Y, et al. Binding of sulfurated molybdenum cofactor to the c-terminal domain of aba3 from Arabidopsis Thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem. 2008;283(15):9642–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundas B, Vural UV, Hala R, Nisar A, Rainer W, Dietmar G, et al. Sulfate is incorporated into cysteine to trigger ABA production and stomatal closure. Plant Cell. 2018;30(12):2973–87.

    Article 

    Google Scholar
     

  • Bishop GJ, Yokota T. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol. 2001;42(2):114–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Chen HT, Li S, Li Y, Kumar KM, Li B, et al. Comparative physiological and proteomic analyses reveal the mechanisms of brassinolide-mediated tolerance to calcium nitrate stress in tomato. Front Plant Sci. 2021;12:724288.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victor P, Bulgakov TV, Avramenko. Linking brassinosteroid and ABA signaling in the context of stress acclimation. Int J Mol Sci. 2020;21:14.


    Google Scholar
     

  • Farooq MA, Haq MZU, Zhang L, Wu S, Mushtaq N, Tahir H, et al. Transcriptomic insights into salt stress response in two pepper species: the role of MAPK and plant hormone signaling pathways. Int J Mol Sci. 2024;25(17):9355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Ma T, Luo W, Xu J, Liu J, Wan D. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress. Genes. 2015;6(3):901–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng G, Lv CH, Stevanato P, Li RR, Liu H, Yu LH, et al. Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. Int J Mol Sci. 2019;20(23):5910.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan HF, Nie YT, Cui KL, Sun J. Integrative transcriptome and metabolome profiles reveal common and unique pathways involved in seed initial imbibition under artificial and natural salt stresses during germination of halophyte quinoa. Front Plant Sci. 2022;13:853326.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S. Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil. 2008;302(1–2):33–43.

    Article 
    CAS 

    Google Scholar
     

  • Mu HM, Du XJ, Zhang XS, Zhang M, Cao X. Study on plants mybtranscription factors regulate biological synthesis of phenylpropanoid metabolism. North Hortic. 2015(24):171–74.

  • Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, et al. Comparative proteomic analysis of tolerant and sensitive varieties reveals that phenylpropanoid biosynthesis contributes to salt tolerance in mulberry. Int J Mol Sci. 2021;22(17):9402.

  • Chen CX, Liu Y, Luo M, Yang JW, Chen YM, Wang RH, et al. Comparative transcriptome analysis of two sweet sorghum genotypes with different salt tolerance abilities to reveal the mechanism of salt tolerance. Int J Mol Sci. 2022;23(4):2272.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ortega-Garcia F, Peragon J. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the Olive tree (olea Europaea l. Cv. Picual). J Sci Food Agric. 2009;89(9):1565–73.

    Article 
    CAS 

    Google Scholar
     

  • Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, et al. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants. 2023;12(16):3003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang SX, Li DL. Research progress of mitogen-activated protein kinase signal transduction pathway. Acta Bot Boreali-Occident Sin. 2016;36(06):1278–84.


    Google Scholar
     

  • Singh A, Kumar A, Yadav S, Singh IK. Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene. 2019;18:100173.

    Article 
    CAS 

    Google Scholar
     

  • Qaiser J, Yanyou W, Deke X, Ahmad A, Ikram U, Muhammad Z. Re-watering: an effective measure to recover growth and photosynthetic characteristics in salt-stressed brassica napus L. Chil J Agric Res. 2017;77(1):78–86.

    Article 

    Google Scholar
     

  • Li ZG, Gong M. Assessment methods for comprehensive and design-based experiments in plant physiology. Plant Physiol J. 2008;03:551–3.


    Google Scholar
     

  • Cheng Y, Chen L, Mi YH, Duan HP, Cha YS, Shao JL, et al. Comparative study on various methods for determination of activity of antioxidant enzymes in rice. Acta Agriculturae Jiangxi. 2018;30(02):108–11.


    Google Scholar
     

  • Zhou X, Ye D, Tang Y, Gan Y, Huang J, Bian Z, et al. LowR:FR light ratio enhances calcium nitrate resistance and stomatal movement in tomato seedlings by regulating H2 O2 accumulation. Hortic Plant J. 2025;11(2):693–705.

    Article 
    CAS 

    Google Scholar
     

  • Wang YL. Experimental guide to plant physiology. Beijing: China Agricultural Press. Li QH, Shi W. Bei; 2014. p. 286–7.

  • Jiang TC. Determination of sulfur content in plants by ICP-aes. Chem Anal Meterage. 2007;16(02):51–2.

  • Li ZG. Quantification of hydrogen sulfide concentration using methylene blue and 5,5’-dithiobis (2-nitrobenzoic acid) methods in plants. Methods Enzymol. 2015;554:101–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen Z, Zhang YH, Zhang L, Li Y, Sun YD, Li ZY. Changes in the distribution of endogenous hormones in phyllostachys Edulis ‘pachyloen’ during bamboo shooting. PLoS ONE. 2020;15:12.

    Article 

    Google Scholar