• Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

  • Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836, 1–74 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Jana, K. et al. Quantum control of flying doughnut terahertz pulses. Sci. Adv. 10, eadl1803 (2024).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

    Article 

    Google Scholar
     

  • Pizzuto, A. et al. Near-field terahertz nonlinear optics with blue light. Light Sci. Appl. 12, 96 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Jelic, V. et al. Atomic-scale terahertz time-domain spectroscopy. Nat. Photon. 18, 898–904 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Dong, J. et al. Single-shot ultrafast terahertz photography. Nat. Commun. 14, 1704 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liao, G. et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc. Natl Acad. Sci. USA 116, 3994–3999 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, M. et al. Intense multicycle THz pulse generation from laser-produced nanoplasmas. Sci. Rep. 13, 4233 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wu, X. et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials. Adv. Mater. 35, 2208947 (2023).

    Article 

    Google Scholar
     

  • Koulouklidis, A. D. et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 11, 292 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Pak, T. et al. Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons. Light Sci. Appl. 12, 37 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Shalaby, M. et al. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 6, 5976 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yang, H. et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide. Opt. Express 25, 14766–14773 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Andruszkow, J. et al. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 3825 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Perenboom, J. A. A. J. et al. Developments at the high field magnet laboratory in Nijmegen. J. Low Temp. Phys. 170, 520–530 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kawase, K. et al. Extremely high-intensity operation of a THz free-electron laser using an electron beam with a higher bunch charge. Nucl. Instrum. Methods A 960, 163582 (2020).

    Article 

    Google Scholar
     

  • Knyazev, B. A. et al. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Meas. Sci. Technol. 21, 054017 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Krasilnikov, M. et al. THz SASE FEL at PITZ: lasing at a wavelength of 100 µm. In Proc. 14th International Particle Accelerator Conference (IPAC’23) 3948–3951 (JACoW Publishing, 2023).

  • Krasilnikov, M. et al. First high peak and average power single-pass THz free-electron laser in operation. Phys. Rev. Accel. Beams 28, 030701 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Fisher, A. et al. Single-pass high-efficiency terahertz free-electron laser. Nat. Photon. 16, 441–447 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Zhang, Z. et al. A high-power, high-repetition-rate THz source for pump-probe experiments at Linac Coherent Light Source II. J. Synchrotron Radiat. 27, 890–901 (2020).

    Article 

    Google Scholar
     

  • Tiedtke, K. et al. The soft X-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 11, 023029 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Fisher, A. et al. Towards higher frequencies in a compact prebunched waveguide THz-FEL. Nat. Commun. 15, 7582 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Power, J. G. & Jing, C. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals. AIP Conf. Proc. 1086, 689–694 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Musumeci, P. et al. Nonlinear longitudinal space charge oscillations in relativistic electron beams. Phys. Rev. Lett. 106, 184801 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dunning, M. et al. Generating periodic terahertz structures in a relativistic electron beam through frequency down-conversion of optical lasers. Phys. Rev. Lett. 109, 074801 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation. Phys. Rev. Lett. 116, 184801 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam. Phys. Rev. Accel. Beams 20, 050701 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, K. et al. A compact accelerator-based light source for high-power, full-bandwidth tunable coherent THz generation. Appl. Sci. 11, 11850 (2021).

    Article 

    Google Scholar
     

  • Lemery, F. et al. Passive ballistic microbunching of non-ultra relativistic electron bunches using electromagnetic wakefields in dielectric-lined waveguides. Phys. Rev. Lett. 122, 044801 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liang, Y. et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation. Nat. Photon. 17, 259–263 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liu, B. et al. The SXFEL upgrade: from test facility to user facility. Appl. Sci. 12, 176 (2022).

    Article 

    Google Scholar
     

  • Huang, Z. et al. Measurements of the linac coherent light source laser heater and its impact on the x-ray free-electron laser performance. Phys. Rev. ST Accel. Beams 13, 020703 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Cesar, D. et al. Electron beam shaping via laser heater temporal shaping. Phys. Rev. Accel. Beams 24, 110703 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Marinelli, A. et al. Optical shaping of X-ray free-electron lasers. Phys. Rev. Lett. 116, 254801 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Roussel, E. et al. Multicolor high-gain free-electron laser driven by seeded microbunching instability. Phys. Rev. Lett. 115, 214801 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Weling, A. S. et al. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space. J. Opt. Soc. Am. Opt. Phys. 13, 2783–2791 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Bielawski, S. et al. Tunable narrowband terahertz emission from mastered laser-electron beam interaction. Nat. Phys. 4, 390–393 (2008).

    Article 

    Google Scholar
     

  • Saldin, E. L. et al. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instrum. Methods A 528, 355–359 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Bonifacio, R. et al. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article 

    Google Scholar
     

  • Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Kang, Y. et al. Generating high-power, frequency tunable coherent THz pulse in an X-ray free-electron laser for THz pump and X-ray probe experiments. Photonics 10, 133 (2023).

    Article 

    Google Scholar
     

  • Zapolnova, E. et al. THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs. J. Synchrotron Rad. 25, 39–46 (2018).

    Article 

    Google Scholar
     

  • Zhang, H. et al. The Linac Coherent Light Source II photoinjector laser infrastructure. High Power Laser Sci. Eng. 12, e51 (2024).

    Article 

    Google Scholar
     

  • Zhang, H. et al. The photoinjector laser system at LCLS-II. In Proc. Laser Congress 2024, Technical Digest Series AM4A.2 (Optica Publishing Group, 2024).

  • Jiang, Z. et al. Design and status of SHINE injector. In Proc. 10th International Particle Accelerator Conference (IPAC’19) TUPRB053 (JACoW Publishing, 2019).

  • Jia, H. et al. High-brightness megahertz-rate beam from a direct-current and superconducting radio-frequency combined photocathode gun. Phys. Rev. Res. 6, 043165 (2024).

    Article 

    Google Scholar
     

  • Xu, H. et al. Gamma-ray flux in gated CW operation of CO2 laser at SLEGS. Nucl. Instrum. Methods A 1073, 170249 (2025).

  • Yu, L. et al. Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods A 483, 493–498 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wu, J. & Bolton, P. R. Coherent X-ray Production by Cascading Stages of High Gain Harmonic Generation Free Electron Lasers Seeded by IR Laser Driven High-Order Harmonic Generation. Report No. SLAC-PUB-12124 (SLAC National Accelerator Laboratory, 2006).

  • Floettmann, K. A Space Charge Tracking Algorithm (DESY, 2017); https://www.desy.de/~mpyflo/

  • Borland, M. ELEGANT: A Flexible SDDS-Compliant Code for Accelerator Simulation. Report No. LS-287 (Argonne National Laboratory, 2000).

  • Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods A 429, 243–248 (1999).

    Article 
    ADS 

    Google Scholar