• Ulaeto D, Agafonov A, Burchfield J, Carter L, Happi C, Jakob R, et al. New nomenclature for mpox (monkeypox) and monkeypox virus clades. Lancet Infect Dis. 2023;23(3):273–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Zhang H, Ding K, Wang XH, Sun GY, Liu ZX, et al. The evolving epidemiology of monkeypox virus. Cytokine Growth Factor Rev. 2022;68:1–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farasani A. Monkeypox virus: future role in human population. J Infect Public Health. 2022;15(11):1270–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otieno JR, Ruis C, Onoja AB, Kuppalli K, Hoxha A, Nitsche A, et al. Global genomic surveillance of monkeypox virus. Nat Med. 2025;31(1):342–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Gigante CM, Korber B, Seabolt MH, Wilkins K, Davidson W, Rao AK, et al. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science. 2022;378(6619):560–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ndodo N, Ashcroft J, Lewandowski K, Yinka-Ogunleye A, Chukwu C, Ahmad A, et al. Distinct monkeypox virus lineages co-circulating in humans before 2022. Nat Med. 2023;29(9):2317–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med. 2022;28(8):1569–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scarpa F, Sanna D, Azzena I, Cossu P, Locci C, Angeletti S, et al. Genetic variability of the monkeypox virus clade IIb B.1. J Clin Med. 2022;11(21):6388.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuzzo JB, Borio LL, Gostin LO. The WHO declaration of monkeypox as a global public health emergency. JAMA. 2022;328(7):615–7.

    PubMed 

    Google Scholar
     

  • Gessain A, Nakoune E, Yazdanpanah Y. Monkeypox. N Engl J Med. 2022;387(19):1783–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Wawina-Bokalanga T, Akil-Bandali P, Kinganda-Lusamaki E, Lokilo E, Jansen D, Amuri-Aziza A, et al. Co-circulation of monkeypox virus subclades Ia and Ib in Kinshasa Province, democratic republic of the Congo, July to August 2024. Euro Surveill. 2024;29(38):2400592.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eurosurveillance Editorial Team. Note from the editors: WHO declares mpox outbreak a public health emergency of international concern. Euro Surveill. 2024;29(33):240815v.

    PubMed Central 

    Google Scholar
     

  • WHO director-general declares mpox outbreak a public health emergency of international concern. Saudi Med J. 2024;45(9):1002–03.

  • Zhang Z, Jiang H, Jiang S, Dong T, Wang X, Wang Y, et al. Rapid detection of the monkeypox virus genome and antigen proteins based on surface-enhanced Raman spectroscopy. ACS Appl Mater Interfaces. 2023;15(29):34419–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Huo S, Chen Y, Lu R, Zhang Z, Zhang G, Zhao L, et al. Development of 2 multiplex real-time PCR assays for simultaneous detection and differentiation of monkeypox virus IIa, IIb, and I clades and the B.1 lineage. Biosaf Health. 2022;4(6):392–8.

    PubMed 

    Google Scholar
     

  • Lu T, Wu Z, Jiang S, Lu L, Liu H. The current emergence of monkeypox: The recurrence of another smallpox? Biosaf Health. 2022;4(6):369–75.

    PubMed 

    Google Scholar
     

  • Lim CK, Roberts J, Moso M, Liew KC, Taouk ML, Williams E, et al. Monkeypox diagnostics: review of current and emerging technologies. J Med Virol. 2023;95(1):e28429.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCollum AM, Damon IK. Human monkeypox. Clin Infect Dis. 2014;58(2):260–7.

    PubMed 

    Google Scholar
     

  • Fine PE, Jezek Z, Grab B, Dixon H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17(3):643–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Gruber MF. Current status of monkeypox vaccines. NPJ Vaccines. 2022;7(1):94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandeel M, Morsy MA, Abd El-Lateef HM, Marzok M, El-Beltagi HS, Al Khodair KM, et al. Efficacy of the modified vaccinia Ankara virus vaccine and the replication-competent vaccine ACAM2000 in monkeypox prevention. Int Immunopharmacol. 2023;119:110206.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hazra A, Rusie L, Hedberg T, Schneider JA. Human monkeypox virus infection in the immediate period after receiving modified vaccinia ankara vaccine. JAMA. 2022;328(20):2064–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang Y, Zhang Z, Liu F, Lu H, Yu C, Sun H, et al. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Signal Transduct Target Ther. 2023;8(1):172.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaeck LM, Lamers MM, Verstrepen BE, Bestebroer TM, van Royen ME, Götz H, et al. Low levels of monkeypox virus-neutralizing antibodies after MVA-BN vaccination in healthy individuals. Nat Med. 2023;29(1):270–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs. 2022;82(9):957–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huston J, Curtis S, Egelund EF. Brincidofovir: a novel agent for the treatment of smallpox. Ann Pharmacother. 2023;57(10):1198–206.

    CAS 
    PubMed 

    Google Scholar
     

  • Hoy SM. Tecovirimat: first global approval. Drugs. 2018;78(13):1377–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Alakunle E, Kolawole D, Diaz-Cánova D, Alele F, Adegboye O, Moens U, et al. A comprehensive review of monkeypox virus and monkeypox characteristics. Front Cell Infect Microbiol. 2024;14:1360586.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim EY, Whitehorn J, Rivett L. Monkeypox: a review of the 2022 outbreak. Br Med Bull. 2023;145(1):17–29.

    PubMed 

    Google Scholar
     

  • Wang L, Shang J, Weng S, Aliyari SR, Ji C, Cheng G, et al. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J Med Virol. 2023;95(1):e28036.

    CAS 
    PubMed 

    Google Scholar
     

  • Smith TG, Gigante CM, Wynn NT, Matheny A, Davidson W, Yang Y, et al. Tecovirimat resistance in monkeypox patients, United States, 2022–2023. Emerg Infect Dis. 2023;29(12):2426–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitjà O, Alemany A, Marks M, Lezama Mora JI, Rodríguez-Aldama JC, Torres Silva MS, et al. monkeypox in people with advanced HIV infection: a global case series. Lancet. 2023;401(10380):939–49.

    PubMed 

    Google Scholar
     

  • Andrei G, Snoeck R. Differences in pathogenicity among the monkeypox virus clades: impact on drug discovery and vaccine development. Trends Pharmacol Sci. 2023;44(10):719–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhang JY, Wang FS. Monkeypox outbreak: a novel threat after COVID-19?. Mil Med Res. 2022;9(1):29.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denkinger CM, Janssen M, Schäkel U, Gall J, Leo A, Stelmach P, et al. Anti-SARS-CoV-2 antibody-containing plasma improves outcome in patients with hematologic or solid cancer and severe COVID-19: a randomized clinical trial. Nat Cancer. 2023;4(1):96–107.

    CAS 
    PubMed 

    Google Scholar
     

  • Marconato M, Abela IA, Hauser A, Schwarzmüller M, Katzensteiner R, Braun DL, et al. Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response. J Clin Invest. 2022;132(12):e158190.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. Elife. 2020;9:e57877.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caskey M, Klein F, Nussenzweig MC. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat Med. 2019;25(4):547–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li M, Wang Y, Li C, Xu R, Chen J, Zhang J, et al. Development of monoclonal antibody-based antigen detection assays for orthopoxvirus and monkeypox virus. J Infect. 2022;85(6):702–69.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuiani A, Dulberger CL, De Silva NS, Marquette M, Lu YJ, Palowitch GM, et al. A multivalent mRNA monkeypox virus vaccine (BNT166) protects mice and macaques from orthopoxvirus disease. Cell. 2024;187(6):1363–73.e12.

    CAS 
    PubMed 

    Google Scholar
     

  • Lederman ER, Davidson W, Groff HL, Smith SK, Warkentien T, Li Y, et al. Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis. 2012;206(9):1372–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, et al. Monkeypox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther. 2023;8(1):458.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi D, He P, Song Y, Cheng S, Linhardt RJ, Dordick JS, et al. Kinetic and structural aspects of glycosaminoglycan-monkeypox virus protein A29 interactions using surface plasmon resonance. Molecules. 2022;27(18):5898.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin CL, Chung CS, Heine HG, Chang W. Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J Virol. 2000;74(7):3353–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao JC, Chung CS, Chang W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol. 1999;73(10):8750–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bisht H, Weisberg AS, Moss B. Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol. 2008;82(17):8687–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unger B, Traktman P. Vaccinia virus morphogenesis: A13 phosphoprotein is required for assembly of mature virions. J Virol. 2004;78(16):8885–901.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monticelli SR, Earley AK, Stone R, Norbury CC, Ward BM. Vaccinia virus glycoproteins A33, A34, and B5 form a complex for efficient endoplasmic reticulum to trans-golgi network transport. J Virol. 2020;94(7):e02155–219.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crickard L, Babas T, Seth S, Silvera P, Koriazova L, Crotty S. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies. PLoS ONE. 2012;7(11):e48706.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamir H, Noy-Porat T, Melamed S, Cherry-Mimran L, Barlev-Gross M, Alcalay R, et al. Synergistic effect of 2 human-like monoclonal antibodies confers protection against orthopoxvirus infection. Nat Commun. 2024;15(1):3265.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esqueda A, Sun H, Bonner J, Lai H, Jugler C, Kibler KV, et al. A monoclonal antibody produced in glycoengineered plants potently neutralizes monkeypox virus. Vaccines. 2023;11(7):1179.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng J, Li Y, Jiang L, Luo L, Wang Y, Wang H, et al. Monkeypox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg Microbes Infect. 2023;12(1):2204151.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu C, Meng X, Yan B, Crotty S, Deng J, Xiang Y. An epitope conserved in orthopoxvirus A13 envelope protein is the target of neutralizing and protective antibodies. Virology. 2011;418(1):67–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Ren Z, Wang Y, Jiang Y, Yang M, Li D, et al. Three neutralizing mabs induced by MPXV A29L protein recognizing different epitopes act synergistically against orthopoxvirus. Emerg Microbes Infect. 2023;12(2):2223669.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng N, Cheng X, Sun M, Zhang Y, Sun X, Liu X, et al. Screening, expression and identification of nanobody against monkeypox virus A35R. Int J Nanomedicine. 2023;18:7173–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao R, Wu L, Sun J, Liu D, Han P, Gao Y, et al. Two noncompeting human neutralizing antibodies targeting MPXV B6 show protective effects against orthopoxvirus infections. Nat Commun. 2024;15(1):4660.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss B. Membrane fusion during poxvirus entry. Semin Cell Dev Biol. 2016;60:89–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GE. Monkeypox epidemic at the door: should we remain idly by or prepare strongly?. AMB Express. 2023;13(1):5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foo CH, Lou H, Whitbeck JC, Ponce-de-León M, Atanasiu D, Eisenberg RJ, et al. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology. 2009;385(2):368–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Carter GC, Law M, Hollinshead M, Smith GL. Entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J Gen Virol. 2005;86(Pt 5):1279–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for monkeypox virus vaccine development: a rapid review. Int J Biol Macromol. 2023;245:125515.

    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt FI, Bleck CK, Helenius A, Mercer J. Vaccinia extracellular virions enter cells by macropinocytosis and acid-activated membrane rupture. Embo J. 2011;30(17):3647–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts KL, Breiman A, Carter GC, Ewles HA, Hollinshead M, Law M, et al. Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. J Gen Virol. 2009;90(Pt 7):1582–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law M, Carter GC, Roberts KL, Hollinshead M, Smith GL. Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci USA. 2006;103(15):5989–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lant S, Maluquer de Motes C. Poxvirus interactions with the host ubiquitin system. Pathogens. 2021;10(8):1034.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mercer J, Snijder B, Sacher R, Burkard C, Bleck CK, Stahlberg H, et al. RNAi screening reveals proteasome- and cullin3-dependent stages in vaccinia virus infection. Cell Rep. 2012;2(4):1036–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Cooper T, Howley PM, Hayball JD. From crescent to mature virion: vaccinia virus assembly and maturation. Viruses. 2014;6(10):3787–808.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruri-Avidal L, Weisberg AS, Moss B. Direct formation of vaccinia virus membranes from the endoplasmic reticulum in the absence of the newly characterized L2-interacting protein A30.5. J Virol. 2013;87(22):12313–26.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tolonen N, Doglio L, Schleich S, Krijnse LJ. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol Cell. 2001;12(7):2031–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breiman A, Carpentier DCJ, Ewles HA, Smith GL. Transport and stability of the vaccinia virus A34 protein is affected by the A33 protein. J Gen Virol. 2013;94(Pt 4):720–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perdiguero B, Blasco R. Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J Virol. 2006;80(17):8763–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, et al. Antigen recognition and immune response to monkeypox virus infection: implications for monkeypox vaccine design—a narrative review. Infez Med. 2025;33(2):151–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croft NP, Smith SA, Wong YC, Tan CT, Dudek NL, Flesch IE, et al. Kinetics of antigen expression and epitope presentation during virus infection. PLoS Pathog. 2013;9(1):e1003129.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serna A, Ramirez MC, Soukhanova A, Sigal LJ. Cutting edge: Efficient MHC class I cross-presentation during early vaccinia infection requires the transfer of proteasomal intermediates between antigen donor and presenting cells. J Immunol. 2003;171(11):5668–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Thiele F, Tao S, Zhang Y, Muschaweckh A, Zollmann T, Protzer U, et al. Modified vaccinia virus ankara-infected dendritic cells present CD4+ T-cell epitopes by endogenous major histocompatibility complex class II presentation pathways. J Virol. 2015;89(5):2698–709.

    PubMed 

    Google Scholar
     

  • Lum FM, Torres-Ruesta A, Tay MZ, Lin RTP, Lye DC, Rénia L, et al. Monkeypox: disease epidemiology, host immunity and clinical interventions. Nat Rev Immunol. 2022;22(10):597–613.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song H, Josleyn N, Janosko K, Skinner J, Reeves RK, Cohen M, et al. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS ONE. 2013;8(10):e77804.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • MacLeod MK, Clambey ET, Kappler JW, Marrack P. CD4 memory T cells: What are they and what can they do?. Semin Immunol. 2009;21(2):53–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M, et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med. 2005;11(7):740–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Hickman HD, Reynoso GV, Ngudiankama BF, Rubin EJ, Magadán JG, Cush SS, et al. Anatomically restricted synergistic antiviral activities of innate and adaptive immune cells in the skin. Cell Host Microbe. 2013;13(2):155–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA. The immunology of smallpox vaccines. Curr Opin Immunol. 2009;21(3):314–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, et al. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe. 2022;30(12):1662–70.e4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, et al. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog. 2014;10(5):e1004123.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Huang QZ, Zhang H, Liu ZX, Chen XH, Ye LL, et al. The land-scape of immune response to monkeypox virus. EBioMedicine. 2023;87:104424.

    CAS 
    PubMed 

    Google Scholar
     

  • Saghazadeh A, Rezaei N. Poxviruses and the immune system: implications for monkeypox virus. Int Immunopharmacol. 2022;113(Pt A):109364.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karem KL, Reynolds M, Hughes C, Braden Z, Nigam P, Crotty S, et al. Monkeypox-induced immunity and failure of childhood smallpox vaccination to provide complete protection. Clin Vaccine Immunol. 2007;14(10):1318–27.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V, Kose N, et al. Cross-neutralizing and protective human antibody specificities to poxvirus infections. Cell. 2016;167(3):684–94.e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown JN, Estep RD, Lopez-Ferrer D, Brewer HM, Clauss TR, Manes NP, et al. Characterization of macaque pulmonary fluid proteome during monkeypox infection: dynamics of host response. Mol Cell Proteomics. 2010;9(12):2760–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liszewski MK, Leung MK, Hauhart R, Buller RM, Bertram P, Wang X, et al. Structure and regulatory profile of the monkeypox inhibitor of complement: comparison to homologs in vaccinia and variola and evidence for dimer formation. J Immunol. 2006;176(6):3725–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Ghate SD, Suravajhala P, Patil P, Vangala RK, Shetty P, Rao RSP. Molecular detection of monkeypox and related viruses: challenges and opportunities. Virus Genes. 2023;59(3):343–50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, et al. Present and future of surface-enhanced raman scattering. ACS Nano. 2020;14(1):28–117.

    CAS 
    PubMed 

    Google Scholar
     

  • Babu PJ, Tirkey A, Paul AA, Kristollari K, Barman J, Panda K, et al. Advances in nano silver-based biomaterials and their biomedical applications. Eng Regen. 2024;5(3):326–41.

    CAS 

    Google Scholar
     

  • Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. Exploration. 2023;3(1):20220072.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun H, Miao Y, Yang X, Guo L, Li Q, Wang J, et al. Rapid identification of A29l antibodies based on mrna immunization and high-throughput single B cell sequencing to detect monkeypox virus. Emerg Microbes Infect. 2024;13(1):2332665.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Townsend MB, MacNeil A, Reynolds MG, Hughes CM, Olson VA, Damon IK, et al. Evaluation of the tetracore orthopox biothreat® antigen detection assay using laboratory-grown orthopoxviruses and rash illness clinical specimens. J Virol Methods. 2013;187(1):37–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Ye L, Lei X, Xu X, Xu L, Kuang H, Xu C. Gold-based paper for antigen detection of monkeypox virus. Analyst. 2023;148(5):985–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu Q, Li J, Zheng S, Xia X, Xu C, Wang C, et al. Molybdenum disulfide-loaded multilayer aunps with colorimetric-sers dual-signal enhancement activities for flexible immunochromatographic diagnosis of monkeypox virus. J Hazard Mater. 2023;459:132136.

    CAS 
    PubMed 

    Google Scholar
     

  • Yan H, Su J, Tian L, Li Q, Feng X, Zhang J, et al. A rapid and sensitive fluorescent chromatography with cloud system for mpxv point-of-care diagnosis. Anal Chim Acta. 2024;1302:342514.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang W, Wang J, Hu Z, Yan X, Gao Q, Li X, et al. Advancing aggregation‐induced emission‐derived biomaterials in viral, tuberculosis, and fungal infectious diseases. Aggregate. 2024.

  • Li Y, Cui Z, Huang L, Zhang D, Shen Y, Cheng J, et al. Aggregation-based analytical chemistry in point-of-care nanosensors. Aggregate. 2024;5(5):e559.


    Google Scholar
     

  • Shu J, Li Y, Cai H, Fu Q, Li C, Yuan J, et al. Ultrabright nir aiegen nanoparticles-enhanced lateral flow immunoassay platform for accurate diagnostics of complex samples. Aggregate. 2024;5(4):e551.

    CAS 

    Google Scholar
     

  • Yang X, Cheng X, Wei H, Tu Z, Rong Z, Wang C, et al. Fluorescence-enhanced dual signal lateral flow immunoassay for flexible and ultrasensitive detection of monkeypox virus. J Nanobiotechnol. 2023;21(1):450.

    CAS 

    Google Scholar
     

  • Chandran M, Chellasamy G, Veerapandian M, Dhanasekaran B, Kumar Arumugasamy S, Govindaraju S, et al. Fabrication of label-free immunoprobe for monkeypox A29 detection using one-step electrodeposited molybdenum oxide-graphene quantum rods. J Colloid Interface Sci. 2024;660:412–22.

    CAS 
    PubMed 

    Google Scholar
     

  • de Lima LF, Barbosa PP, Simeoni CL, de Paula RFO, Proenca-Modena JL, de Araujo WR. Electrochemical paper-based nanobiosensor for rapid and sensitive detection of monkeypox virus. ACS Appl Mater Interfaces. 2023;15(50):58079–91.

    PubMed 

    Google Scholar
     

  • Fan Z, Liu Y, Ye Y, Liao Y. Functional probes for the diagnosis and treatment of infectious diseases. Aggregate. 2024;5(6):e620.

    CAS 

    Google Scholar
     

  • Han C, Liu Q, Luo X, Zhao J, Zhang Z, He J, et al. Development of a CRISPR/Cas12a-mediated aptasensor for mpox virus antigen detection. Biosens Bioelectron. 2024;257:116313.

    CAS 
    PubMed 

    Google Scholar
     

  • Cai S, Ren R, He J, Wang X, Zhang Z, Luo Z, et al. Selective single-molecule nanopore detection of monkeypox A29 protein directly in biofluids. Nano Lett. 2023;23(24):11438–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Organization WH, Target product profiles for tests used for monkeypox (monkeypox) diagnosis. World Health Organization: 2023.

  • Trivedi J, Yasir M, Maurya RK, Tripathi AS. Aptamer-based theranostics in oncology: design strategies and limitations. BIO Integr. 2024;5(1):1–20.

    CAS 

    Google Scholar
     

  • Li T, Qian C, Gu Y, Zhang J, Li S, Xia N. Current progress in the development of prophylactic and therapeutic vaccines. Sci China Life Sci. 2023;66(4):679–710.

    CAS 
    PubMed 

    Google Scholar
     

  • Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, et al. Vaccine development: current trends and technologies. Life Sci. 2024;336:122331.

    CAS 
    PubMed 

    Google Scholar
     

  • Bartlett BL, Pellicane AJ, Tyring SK. Vaccine immunology. Dermatol Ther. 2009;22(2):104–9.

    PubMed 

    Google Scholar
     

  • Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014;6(6):708–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. Lancet Infect Dis. 2022;22(12):e349–58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lozano JM, Muller S. Monkeypox: potential vaccine development strategies. Trends Pharmacol Sci. 2023;44(1):15–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Atutxa I, Mondragon-Teran P, Huerta-Saquero A, Villanueva-Flores F. Advancements in monkeypox vaccines development: a critical review of emerging technologies. Front Immunol. 2024;15:1456060.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothenburg S, Yang Z, Beard P, Sawyer SL, Titanji B, Gonsalves G, et al. Monkeypox emergency: urgent questions and perspectives. Cell. 2022;185(18):3279–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt FI, Bleck CK, Mercer J. Poxvirus host cell entry. Curr Opin Virol. 2012;2(1):20–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Vliet K, Mohamed MR, Zhang L, Villa NY, Werden SJ, Liu J, et al. Poxvirus proteomics and virus-host protein interactions. Microbiol Mol Biol Rev. 2009;73(4):730–49.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weaver JR, Isaacs SN. Monkeypox virus and insights into its immunomodulatory proteins. Immunol Rev. 2008;225:96–113.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papukashvili D, Rcheulishvili N, Liu C, Wang X, He Y, Wang PG. Strategy of developing nucleic acid-based universal monkeypox vaccine candidates. Front Immunol. 2022;13:1050309.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keasey S, Pugh C, Tikhonov A, Chen G, Schweitzer B, Nalca A, et al. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PLoS ONE. 2010;5(12):e15547.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moss B. Poxvirus cell entry: How many proteins does it take?. Viruses. 2012;4(5):688–707.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology. 1999;254(1):71–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Lai CF, Gong SC, Esteban M. The purified 14-kilodalton envelope protein of vaccinia virus produced in escherichia coli induces virus immunity in animals. J Virol. 1991;65(10):5631–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol. 2005;79(21):13454–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooper JW, Custer DM, Thompson E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology. 2003;306(1):181–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. J Biosaf Biosecur. 2023;5(1):1–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooper JW, Custer DM, Schmaljohn CS, Schmaljohn AL. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge. Virology. 2000;266(2):329–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol. 2004;78(19):10230–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol. 2004;78(9):4433–43.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007;25(10):1814–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Hirao LA, Draghia-Akli R, Prigge JT, Yang M, Satishchandran A, Wu L, et al. Multivalent smallpox DNA vaccine delivered by intradermal electroporation drives protective immunity in nonhuman primates against lethal monkeypox challenge. J Infect Dis. 2011;203(1):95–102.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown E, Senkevich TG, Moss B. Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol. 2006;80(19):9455–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies DH, McCausland MM, Valdez C, Huynh D, Hernandez JE, Mu Y, et al. Vaccinia virus h3l envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice. J Virol. 2005;79(18):11724–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freyn AW, Atyeo C, Earl PL, Americo JL, Chuang GY, Natarajan H, et al. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci Transl Med. 2023;15(716):eadg3540.

    CAS 
    PubMed 

    Google Scholar
     

  • Mucker EM, Freyn AW, Bixler SL, Cizmeci D, Atyeo C, Earl PL, et al. Comparison of protection against monkeypox following mRNA or modified vaccinia ankara vaccination in nonhuman primates. Cell. 2024;187(20):5540–53.e10.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang RR, Wang ZJ, Zhu YL, Tang W, Zhou C, Zhao SQ, et al. Rational development of multicomponent mRNA vaccine candidates against monkeypox. Emerg Microbes Infect. 2023;12(1):2192815.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang N, Cheng X, Zhu Y, Mo O, Yu H, Zhu L, et al. Multivalent mRNA vaccines against monkeypox enveloped or mature viron surface antigens demonstrate robust immune response and neutralizing activity. Sci China Life Sci. 2023;66(10):2329–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Hou F, Zhang Y, Liu X, Murad YM, Xu J, Yu Z, et al. mRNA vaccines encoding fusion proteins of monkeypox virus antigens protect mice from vaccinia virus challenge. Nat Commun. 2023;14(1):5925.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang Z, Monteiro VS, Renauer PA, Shang X, Suzuki K, Ling X, et al. Polyvalent mrna vaccination elicited potent immune response to monkeypox virus surface antigens. Cell Res. 2023;33(5):407–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye T, Zhou J, Guo C, Zhang K, Wang Y, Liu Y, et al. Polyvalent monkeypox mRNA vaccines elicit robust immune responses and confer potent protection against vaccinia virus. Cell Rep. 2024;43(6):114269.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Hu C, Yang X, Yang X, Hu X, Wang X, et al. Evaluation and comparison of immune responses induced by 2 monkeypox mRNA vaccine candidates in mice. J Med Virol. 2023;95(10):e29140.

    CAS 
    PubMed 

    Google Scholar
     

  • Su C, Li S, Wen Y, Geng X, Yin Q, Wang Y, et al. A quadrivalent mRNA immunization elicits potent immune responses against multiple orthopoxviral antigens and neutralization of monkeypox virus in rodent models. Vaccines. 2024;12(4):385.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus genome evolution: the role of gene loss. Viruses. 2010;2(9):1933–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenner F, Wittek R, Dumbell K. The pathogenesis, pathology, and immunology of orthopoxvirus infections. The Orthopoxviruses. 1989:85–141.

  • Cheng F, Wang Y, Bai Y, Liang Z, Mao Q, Liu D, et al. Research advances on the stability of mRNA vaccines. Viruses. 2023;15(3):668.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guasp P, Reiche C, Sethna Z, Balachandran VP. RNA vaccines for cancer: principles to practice. Cancer Cell. 2024;42(7):1163–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Greenberg RN, Overton ET, Haas DW, Frank I, Goldman M, von Krempelhuber A, et al. Safety, immunogenicity, and surrogate markers of clinical efficacy for modified vaccinia ankara as a smallpox vaccine in HIV-infected subjects. J Infect Dis. 2013;207(5):749–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Gu Z, Sheng S, Song R, Jin R. The current state and progress of monkeypox vaccine research. China CDC Wkly. 2024;6(7):118–25.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fogg CN, Americo JL, Lustig S, Huggins JW, Smith SK, Damon I, et al. Adjuvant-enhanced antibody responses to recombinant proteins correlate with protection of mice and monkeys to orthopoxvirus challenges. Vaccine. 2007;25(15):2787–99.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchman GW, Cohen ME, Xiao Y, Richardson-Harman N, Silvera P, DeTolla LJ, et al. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine. 2010;28(40):6627–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benhnia MR, McCausland MM, Moyron J, Laudenslager J, Granger S, Rickert S, et al. Vaccinia virus extracellular enveloped virion neutralization in vitro and protection in vivo depend on complement. J Virol. 2009;83(3):1201–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Benhnia MR, McCausland MM, Laudenslager J, Granger SW, Rickert S, Koriazova L, et al. Heavily isotype-dependent protective activities of human antibodies against vaccinia virus extracellular virion antigen B5. J Virol. 2009;83(23):12355–67.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang D, Liu X, Lu J, Fan H, Xu X, Sun K, et al. Recombinant proteins A29L, M1R, A35R, and B6R vaccination protects mice from monkeypox virus challenge. Front Immunol. 2023;14:1203410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Yang X, Du S, Hu C, Yang X, Wang X, et al. A subunit vaccine candidate composed of monkeypox virus A29L, M1R, A35R, and B6R elicits robust immune response in mice. Vaccines. 2023;11(9):1420.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin W, Shen C, Li M, Ma S, Liu C, Huang J, et al. Programmable macrophage vesicle based bionic self-adjuvanting vaccine for immunization against monkeypox virus. Adv Sci. 2025;12(1):e2408608.


    Google Scholar
     

  • Wang H, Yin P, Zheng T, Qin L, Li S, Han P, et al. Rational design of a ‘two-in-one’ immunogen dam drives potent immune response against monkeypox virus. Nat Immunol. 2024;25(2):307–15.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell Mol Immunol. 2018;15(2):182–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Tiwary P, Oswal K, Varghese R, Anchan H, Oswal M. Multi-epitope vaccines: charting a new frontier in monkeypox prevention and control. Hum Cell. 2025;38(5):126.

    PubMed 

    Google Scholar
     

  • Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, et al. Immunoinformatics and vaccine development: an overview. Immunotargets Ther. 2020;9:13–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bidmos FA, Siris S, Gladstone CA, Langford PR. Bacterial vaccine antigen discovery in the reverse vaccinology 2.0 era: progress and challenges. Front Immunol. 2018;9:2315.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan C, Zhu F, Pan P, Wu A, Li C. Development of multi-epitope vaccines against the monkeypox virus based on envelope proteins using immunoinformatics approaches. Front Immunol. 2023;14:1112816.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts KL, Smith GL. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 2008;16(10):472–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Suleman M, Rashid F, Ali S, Sher H, Luo S, Xie L, et al. Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Front Immunol. 2022;13:1042997.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousaf M, Ismail S, Ullah A, Bibi S. Immuno-informatics profiling of monkeypox virus cell surface binding protein for designing a next-generation multi-valent peptide-based vaccine. Front Immunol. 2022;13:1035924.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shantier SW, Mustafa MI, Abdelmoneim AH, Fadl HA, Elbager SG, Makhawi AM. Novel multi epitope-based vaccine against monkeypox virus: vaccinomic approach. Sci Rep. 2022;12(1):15983.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanami S, Nazarian S, Ahmad S, Raeisi E, Tahir Ul Qamar M, Tahmasebian S, et al. In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS ONE. 2023;18(5):e0286224.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Araújo LP, de Melo Santos NC, Corsetti PP, de Almeida LA. Immunoinformatic approach for rational identification of immunogenic peptides against host entry and/or exit monkeypox proteins and potential multiepitope vaccine construction. J Infect Dis. 2024;229(Supplement_2):S285–92.

    PubMed 

    Google Scholar
     

  • Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010;33(4):530–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin Y, Fayyaz A, Liaqat A, Khan A, Alshammari A, Wang Y, et al. Proteomics-based vaccine targets annotation and design of subunit and mRNA-based vaccines for monkeypox virus (mpxv) against the recent outbreak. Comput Biol Med. 2023;159:106893.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh S, Rao A, Kumar K, Mishra A, Prajapati VK. Translational vaccinomics and structural filtration algorithm to device multiepitope vaccine for catastrophic monkeypox virus. Comput Biol Med. 2023;153:106497.

    CAS 
    PubMed 

    Google Scholar
     

  • Waqas M, Aziz S, Liò P, Khan Y, Ali A, Iqbal A, et al. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol. 2023;14:1091941.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aiman S, Alhamhoom Y, Ali F, Rahman N, Rastrelli L, Khan A, et al. Multi-epitope chimeric vaccine design against emerging monkeypox virus via reverse vaccinology techniques-a bioinformatics and immunoinformatics approach. Front Immunol. 2022;13:985450.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akhtar N, Kaushik V, Grewal RK, Wani AK, Suwattanasophon C, Choowongkomon K, et al. Immunoinformatics-aided design of a peptide based multiepitope vaccine targeting glycoproteins and membrane proteins against monkeypox virus. Viruses. 2022;14(11):2374.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammarlund E, Dasgupta A, Pinilla C, Norori P, Früh K, Slifka MK. Monkeypox virus evades antiviral CD4+ and CD8+ T cell responses by suppressing cognate T cell activation. Proc Natl Acad Sci USA. 2008;105(38):14567–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pritam M. Exploring the whole proteome of monkeypox virus to design B-cell epitope-based oral vaccines using immunoinformatics approaches. Int J Biol Macromol. 2023;252:126498.

    CAS 
    PubMed 

    Google Scholar
     

  • Swetha RG, Basu S, Ramaiah S, Anbarasu A. Multi-epitope vaccine for monkeypox using pan-genome and reverse vaccinology approaches. Viruses. 2022;14(11):2504.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Alkhorayef N, Khan K, et al. Delineating multi-epitope vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach. J Biomol Struct Dyn. 2024;42(16):8385–406.

    CAS 
    PubMed 

    Google Scholar
     

  • Bloch EM, Sullivan DJ, Shoham S, Tobian AAR, Casadevall A, Gebo KA. The potential role of passive antibody-based therapies as treatments for monkeypox. MBio. 2022;13(6):e0286222.

    PubMed 

    Google Scholar
     

  • Thet AK, Kelly PJ, Kasule SN, Shah AK, Chawala A, Latif A, et al. The use of vaccinia immune globulin in the treatment of severe monkeypox. Virus infection in human immunodeficiency virus/aids. Clin Infect Dis. 2023;76(9):1671–3.

    PubMed 

    Google Scholar
     

  • Gu X, Zhang Y, Jiang W, Wang D, Lu J, Gu G, et al. Protective human anti-poxvirus monoclonal antibodies are generated from rare memory B cells isolated by multicolor antigen tetramers. Vaccines. 2022;10(7):1084.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wittek R. Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int J Infect Dis. 2006;10(3):193–201.

    PubMed 

    Google Scholar
     

  • Xiao Y, Isaacs SN. Therapeutic vaccines and antibodies for treatment of orthopoxvirus infections. Viruses. 2010;2(10):2381–403.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell E, Shamim M, Whitbeck JC, Sfyroera G, Lambris JD, Isaacs SN. Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology. 2004;325(2):425–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA, et al. Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 2001;509(1):66–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guarner J, Del Rio C, Malani PN. Monkeypox in 2022-what clinicians need to know. JAMA. 2022;328(2):139–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Piparva KG, Fichadiya N, Joshi T, Malek S. Monkeypox: from emerging trends to therapeutic concerns. Cureus. 2024;16(4):e58866.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalil A, Samara A, O’Brien P, Ladhani SN. Treatment and prevention of monkeypox in pregnant people and young children. Lancet Infect Dis. 2023;23(4):396–7.

    PubMed 

    Google Scholar
     

  • Khalil A, Samara A, O’Brien P, Coutinho CM, Duarte G, Quintana SM, et al. Monkeypox in pregnancy: update on current outbreak. Lancet Infect Dis. 2022;22(11):1534–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker S, D’Angelo J, Buller RM, Smee DF, Lantto J, Nielsen H, et al. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge. Antivir Res. 2021;195:105179.

    CAS 
    PubMed 

    Google Scholar
     

  • Mitchell LS, Colwell LJ. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. Protein Eng Des Sel. 2018;31(7–8):267–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol. 2018;96:37–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Allegra A, Innao V, Gerace D, Vaddinelli D, Allegra AG, Musolino C. Nanobodies and cancer: current status and new perspectives. Cancer Invest. 2018;36(4):221–37.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu H, Mao G, Pei Z, Cen J, Meng W, Wang Y, et al. In vitro affinity maturation of nanobodies against monkeypox virus A29 protein based on computer-aided design. Molecules. 2023;28(19):6838.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus l1r open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211(1):53–63.

    CAS 
    PubMed 

    Google Scholar
     

  • McNulty MJ, Nandi S, McDonald KA. Technoeconomic modeling and simulation for plant-based manufacturing of recombinant proteins. Methods Mol Biol. 2022;2480:159–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. MAbs. 2016;8(8):1456–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q. Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc Natl Acad Sci USA. 2016;113(34):9404–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira NA, Chan KF, Lin PC, Song Z. The, “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs. 2018;10(5):693–711.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marusic C, Pioli C, Stelter S, Novelli F, Lonoce C, Morrocchi E, et al. N-glycan engineering of a plant-produced anti-CD20-HIL-2 immunocytokine significantly enhances its effector functions. Biotechnol Bioeng. 2018;115(3):565–76.

    CAS 
    PubMed 

    Google Scholar
     

  • Matho MH, Schlossman A, Meng X, Benhnia MR, Kaever T, Buller M, et al. Structural and functional characterization of anti-A33 antibodies reveal a potent cross-species orthopoxviruses neutralizer. PLoS Pathog. 2015;11(9):e1005148.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Earl P, Americo J, Damon I, Smith SK, Yu F, et al. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007;81(17):8989–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Earl P, Americo J, Damon I, Smith SK, Zhou YH, et al. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A. 2006;103(6):1882–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, et al. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog. 2023;180:106156.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mucker EM, Wollen-Roberts SE, Kimmel A, Shamblin J, Sampey D, Hooper JW. Intranasal monkeypox marmoset model: prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Negl Trop Dis. 2018;12(6):e0006581.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol Ther Nucleic Acids. 2022;28:847–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi H, Zhao SQ, Chen RY, Suo XX, Zhang RR, Yang WH, et al. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther. 2024;9(1):69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Mo W, Xiao X, Cai M, Feng S, Wang Y, et al. Antibiotic-loaded lactoferrin nanoparticles as a platform for enhanced infection therapy through targeted elimination of intracellular bacteria. Asian J Pharm Sci. 2024;19(4):100926.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Huang J, Buratto D, Han P, Yang Z, Zhou R. A pH-responsive nanoparticle delivery system containing dihydralazine and doxorubicin-based prodrug for enhancing antitumor efficacy. Aggregate. 2023;5(1):e434.


    Google Scholar
     

  • Wang W, Guo H, Lin S, Xiao X, Liu Y, Wang Y, et al. Biosafety materials for tuberculosis treatment. Biosaf Health. 2022;4(4):258–68.


    Google Scholar
     

  • Hagedorn L, Jürgens DC, Merkel OM, Winkeljann B. Endosomal escape mechanisms of extracellular vesicle-based drug carriers: lessons for lipid nanoparticle design. Extracell Vesicles Circ Nucl Acids. 2024;5(3):344–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang F, An X, Wang R, Wu W, Yang L, Zheng Y, et al. Microalgae-based drug delivery system for tumor microenvironment photo-modulating and synergistic chemo-photodynamic therapy of osteosarcoma. Eng Regen. 2024;5(2):199–209.

    CAS 

    Google Scholar
     

  • Huang H, Lang Y, Wang S, Zhou M. Microalgae-based drug delivery systems in biomedical applications. Eng Regen. 2024;5(3):361–74.

    CAS 

    Google Scholar
     

  • Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living cell for drug delivery. Eng Regen. 2022;3(2):131–48.

    CAS 

    Google Scholar
     

  • Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, et al. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnol. 2024;22(1):510.


    Google Scholar
     

  • He S, Fu Y, Tan Z, Jiang Q, Huang K, Saw PE, et al. Optimization of ultra-small nanoparticles for enhanced drug delivery. BIO Integration. 2023;4(2):62–9.

    CAS 

    Google Scholar
     

  • Wang F, Li Z. Engineered extracellular vesicles as “supply vehicles” to alleviate type 1 diabetes. Extracell Vesicles Circ Nucl Acids. 2024;5(4):618–21.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Song P, Zhang H, Zhou F, Ji N, Wang M, et al. Synthetic biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR-4 to ameliorate osteoporosis. J Extracell Vesicles. 2024;13(4):e12429.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater. 2022;14:169–81.

    CAS 
    PubMed 

    Google Scholar
     

  • Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nat Rev Drug Discov. 2022;21(9):676–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garegnani L, Styrmisdóttir L, Roson Rodriguez P, Escobar Liquitay CM, Esteban I, Franco JV. Palivizumab for preventing severe respiratory syncytial virus (RSV) infection in children. Cochrane Database Syst Rev. 2021;11(11):Cd013757.

    PubMed 

    Google Scholar
     

  • Li B, Wang W, Zhao L, Li M, Yan D, Li X, et al. Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus transmission blockage in monkeypox. Adv Mater. 2024;36(9):e2305378.

    PubMed 

    Google Scholar
     

  • Wang C, Lv S, Sun Z, Xiao M, Fu H, Tian L, et al. A self-regulated phototheranostic nanosystem with single wavelength-triggered energy switching and oxygen supply for multimodal synergistic therapy of bacterial biofilm infections. Aggregate. 2024;5(5):e587.

    CAS 

    Google Scholar
     

  • Li X, Wang W, Gao Q, Lai S, Liu Y, Zhou S, et al. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing. Exploration. 2024;4(6):20230113.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol. 2024;19(6):834–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Wang X, Yuan Y, Hu R, Chen Q, Zhu L, et al. Photosensitizers with aggregation-induced emission and their biomedical applications. Eng Regen. 2022;3(1):59–72.

    CAS 

    Google Scholar
     

  • Li B, Wang W, Song W, Zhao Z, Tan Q, Zhao Z, et al. Antiviral and anti-inflammatory treatment with multifunctional alveolar macrophage-like nanoparticles in a surrogate mouse model of COVID-19. Adv Sci. 2021;8(13):2003556.

    CAS 

    Google Scholar
     

  • Hu Z, Wang W, Lin Y, Guo H, Chen Y, Wang J, et al. Extracellular vesicle-inspired therapeutic strategies for the COVID-19. Adv Healthc Mater. 2024;13(29):e2402103.

    PubMed 

    Google Scholar
     

  • Shi R, Zhan A, Li X, Kong B, Liang G. Biomimetic extracellular vesicles for the tumor targeted treatment. Eng Regen. 2023;4(4):427–37.

    CAS 

    Google Scholar
     

  • Jiang L, Xu A, Guan L, Tang Y, Chai G, Feng J, et al. A review of monkeypox: biological characteristics, epidemiology, clinical features, diagnosis, treatment, and prevention strategies. Exploration. 2024;5(2):20230112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma T, Liu D, Lyu K, Gao T, Shi D, Zhao L, et al. Establishment and application of national reference panels for SARS-CoV-2 antigen detection kit. Biosaf Health. 2023;5(6):326–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou H, Wang C, Rao J, Chen L, Ma T, Liu D, et al. The impact of sample processing on the rapid antigen detection test for SARS-CoV-2: virus inactivation, VTM selection, and sample preservation. Biosaf Health. 2021;3(5):238–43.

    PubMed 

    Google Scholar
     

  • Forgham H, Kakinen A, Qiao R, Davis TP. Keeping up with the COVID’s—Could siRNA-based antivirals be a part of the answer? Exploration. 2022;2(6):20220012.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: design and recent applications. Exploration. 2022;2(6):20210217.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. Exploration. 2022;2(5):20210082.

    PubMed Central 

    Google Scholar
     

  • Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther. 2022;7(1):373.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taub DD, Ershler WB, Janowski M, Artz A, Key ML, McKelvey J, et al. Immunity from smallpox vaccine persists for decades: a longitudinal study. Am J Med. 2008;121(12):1058–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viner KM, Isaacs SN. Activity of vaccinia virus-neutralizing antibody in the sera of smallpox vaccinees. Microbes Infect. 2005;7(4):579–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Bankuru SV, Kossol S, Hou W, Mahmoudi P, Rychtář J, Taylor D. A game-theoretic model of monkeypox to assess vaccination strategies. PeerJ. 2020;8:e9272.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagant S, Liberatore RA. In vivo electroporation of plasmid DNA: a promising strategy for rapid, inexpensive, and flexible delivery of anti-viral monoclonal antibodies. Pharmaceutics. 2021;13(11):1882.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babalola BA, Akinsuyi OS, Folajimi EO, Olujimi F, Otunba AA, Chikere B, et al. Exploring the future of SARS-CoV-2 treatment after the first 2 years of the pandemic: a comparative study of alternative therapeutics. Biomed Pharmacother. 2023;165:115099.

    CAS 
    PubMed 

    Google Scholar
     

  • Sun H, Chen Q, Lai H. Development of antibody therapeutics against flaviviruses. Int J Mol Sci. 2017;19(1):54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Almeida Oliveira A, Praia Borges Freire D, Rodrigues de Andrade A, de Miranda Marques A, da Silva Madeira L, Moreno Senna JP, et al. The landscape of neutralizing monoclonal antibodies (nAbs) for treatment and prevention of COVID-19. J Pharm Innov. 2023:1–19.

  • Nezvalova-Henriksen K, Langebrake C, Bauters T, Moreno-Martinez ME, Ahnfelt E, Ekelund H, et al. Implementation and operational management of marketed chimeric antigen receptor T cell (CAR-T cell) therapy-a guidance by the GOCART Coalition pharmacist working group. Bone Marrow Transplant. 2023;58(10):1069–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Faulkner L, Verna M, Rovelli A, Agarwal RK, Dhanya R, Parmar L, et al. Setting up and sustaining blood and marrow transplant services for children in middle-income economies: an experience-driven position paper on behalf of the EBMT. PDWP Bone Marrow Transplant. 2021;56(3):536–43.

    PubMed 

    Google Scholar
     

  • Barocas JA, Strathdee SA. Beyond sex: human monkeypox virus is an emerging threat to marginalized populations. Open Forum Infect Dis. 2022;9(11):ofac551.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suárez Rodríguez B, Guzmán Herrador BR, Díaz Franco A, Sánchez-Seco Fariñas MP, Del Amo VJ, Aginagalde Llorente AH, et al. Epidemiologic features and control measures during monkeypox outbreak, Spain, June 2022. Emerg Infect Dis. 2022;28(9):1847–51.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potet J, Beran D, Ray N, Alcoba G, Habib AG, Iliyasu G, et al. Access to antivenoms in the developing world: a multidisciplinary analysis. Toxicon X. 2021;12:100086.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johri N, Kumar D, Nagar P, Maurya A, Vengat M, Jain P. Clinical manifestations of human monkeypox infection and implications for outbreak strategy. Health Sci Rev. 2022;5:100055.


    Google Scholar
     

  • Crosato V, Formenti B, Gulletta M, Odolini S, Compostella S, Tomasoni LR, et al. Perception and awareness about monkeypox and vaccination acceptance in an at-risk population in Brescia, Italy: an investigative survey. AIDS Behav. 2024;28(5):1594–600.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lulli LG, Baldassarre A, Mucci N, Arcangeli G. Prevention, risk exposure, and knowledge of monkeypox in occupational settings: a scoping review. Trop Med Infect Dis. 2022;7(10):276.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zardi EM, Chello C. Human monkeypox global public health emergency. Int J Environ Res Public Health. 2022;19(24):16781.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirani R, Rashid D, Lewis J, Hosein-Woodley R, Issani A. Monkeypox outbreak in the age of COVID-19: a new global health emergency. Mil Med Res. 2022;9(1):55.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallau GL, Maciel-de-Freitas R, Schmidt-Chanasit J. An unfolding monkeypox outbreak in Europe and beyond. Mil Med Res. 2022;9(1):31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun N, Meng X, Liu Y, Song D, Jiang C, Cai J. Applications of brain organoids in neurodevelopment and neurological diseases. J Biomed Sci. 2021;28(1):30.

    PubMed 
    PubMed Central 

    Google Scholar