Dark matter near the center of our galaxy is “flattened,” not round as previously thought, new simulations reveal. The discovery may point to the origin of a mysterious high-energy glow that has puzzled astronomers for more than a decade, although more research is needed to rule out other theories.

“When the Fermi space telescope pointed to the galactic center, it measured too many gamma rays,” Moorits Mihkel Muru, a researcher at the Leibniz Institute for Astrophysics Potsdam in Germany and the University of Tartu in Estonia, told Live Science via email. “Different theories compete to explain what could be producing that excess, but nobody has the definitive answer yet.”

Early on, scientists proposed that the glow might come from dark matter particles colliding and annihilating each other. However, the signal’s flattened shape didn’t match the spherical halos assumed in most dark matter models. That discrepancy led many scientists to favor an alternative explanation involving millisecond pulsars — ancient, fast-spinning neutron stars that emit gamma-rays.

You may like

Now, a study published Oct. 16 in the journal Physical Review Letters and led by Muru challenges the long-standing assumption about the shape of dark matter. Using advanced simulations of the Milky Way, Muru and his colleagues found that dark matter near the galactic center is not perfectly round, but flattened — just like the observed gamma-ray signal.

Gamma-rays are the most energetic form of light. They are often produced in the universe’s most extreme environments, such as violent stellar explosions and matter swirling around black holes. Yet even after accounting for known sources, astronomers have consistently found an unexplained glow coming from the Milky Way‘s core.

One proposed explanation is that the radiation originates from dark matter — the invisible substance that makes up most of the universe’s mass. Some models suggest that dark matter particles can occasionally smash together, converting part of their mass into bursts of gamma-rays.

“As there are no direct measurements of dark matter, we don’t know a lot about it,” Muru said. “One theory is that dark matter particles can interact with each other and annihilate. When two particles collide, they release energy as high-energy radiation.”

But this theory fell out of favor when the flattened, disk-like shape of the gamma rays failed to match up with the hypothesized shape of dark matter haloes — which are thought to be spherical.

a spiral galaxy

Astronomers suspect that many galaxies, including the Milky Way and NGC 24 (shown here), are contained within extended, spherical haloes of invisible dark matter. (Image credit: NASA / Hubble)