Kopittke PM, et al. Soil and the intensification of agriculture for global food security. Environ Int. 2019;132:105078.
Iqbal UN, Moin A, Alam M. Salinity-induced stress in plants vis-à-vis endophytic microorganisms: searching for a sustainable solution to feed the future world. Phytochem Rev, 2024. https://doi.org/10.1007/s11101-024-10057-7.
Szymanska S, et al. Bacterial Microbiome of root-associated endophytes of salicornia Europaea in correspondence to different levels of salinity. Environ Sci Pollut Res Int. 2018;25(25):25420–31.
Gao L, et al. Insight into endophytic microbial diversity in two halophytes and plant beneficial attributes of Bacillus swezeyi. Front Microbiol. 2024;15:1447755.
Afzal I, Shinwari ZK, Sikandar S, Shahzad S. Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res. 2019;221:36–49.
Pandey SS, et al. Plant probiotics – Endophytes pivotal to plant health. Microbiol Res. 2022;263:127148.
Ibáñez F et al. Bacterial Endophytes of Plants: Diversity, Invasion Mechanisms and Effects on the Host, in Endophytes: Biology and Biotechnology. 2017. pp. 25–40.
Mushtaq S, et al. Interaction between bacterial endophytes and host plants. Front Plant Sci. 2022;13:1092105.
Zhang Q, et al. Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci Rep. 2019;9(1):4950.
Yang C, Hamel C, Gan Y, Vujanovic V. Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops. Can J Microbiol. 2012;58(12):1368–77.
Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of burkholderia Cepacia complex isolates. Appl Environ Microbiol. 2007;73(22):7259–67.
Sérgio B, Miguel P, et al. Diversity of endophytic bacteria in the fruits of coffea canephora. Afr J Microbiol Res. 2013;7(7):586–94.
Bertani I, et al. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and Microbiome analysis. Environ Microbiol Rep. 2016;8(3):388–98.
Chebotar VK, et al. Endophytic bacteria in microbial preparations that improve plant development (review). Appl Biochem Microbiol. 2015;51(3):271–7.
Sahu PK, Singh SZ, Ojha S, Jayalakshmi KTJ, Manzar K N, and, AK SPaS. Colonization potential of endophytes from halophytic plants growing in the runn of Kutch salt marshes and their contribution to mitigating salt stress in tomato cultivation. Front Microbiol. 2023;14:1226149.
Wang X et al. Diversity and functional insights into endophytic fungi in halophytes from West Ordos desert ecosystems. J Fungi (Basel). 2025;11(1):1–20.
Tian XY, Zhang CS. Illumina-Based analysis of endophytic and rhizosphere bacterial diversity of the coastal halophyte messerschmidia sibirica. Front Microbiol. 2017;8:2288.
Mora-Ruiz Mdel R et al. Endophytic microbial diversity of the halophyte arthrocnemum macrostachyum across plant compartments. FEMS Microbiol Ecol. 2016;92(9):fiw145. https://doi.org/10.1093/femsec/fiw145.
Belhadj-Khedher C, El-Melki T, Mouillot F. Saharan hot and dry Sirocco winds drive extreme fire events in mediterranean Tunisia (North Africa). Atmosphere. 2020;11(6):590. https://doi.org/10.3390/atmos11060590.
El Arbi A, et al. The Tunisian Oasis ecosystem is a source of antagonistic Bacillus spp. Producing diverse antifungal lipopeptides. Res Microbiol. 2016;167(1):46–57.
El Hidri D, et al. Cultivation-dependent assessment, diversity, and ecology of haloalkaliphilic bacteria in arid saline systems of Southern Tunisia. Biomed Res Int. 2013;2013:p648141.
Mapelli F, et al. Potential for plant growth promotion of rhizobacteria associated with salicornia growing in Tunisian hypersaline soils. Biomed Res Int. 2013;2013:p248078.
Hidri R, et al. Plant Growth-Promoting rhizobacteria alleviate high salinity impact on the halophyte Suaeda fruticosa by modulating antioxidant defense and soil biological activity. Front Plant Sci. 2022;13:821475.
Tarek Slatni, W.Z., Amal Razzegui, José Antonio Hernández, … Pedro Díaz-Vivancos,Halophilic Bacillus improve barley growth on calcareous soil via enhanced photosynthetic performance and metabolomic re-programming Journal of Plant Physiology, 2024. 309.
Ali B, et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. South Afr J Bot. 2022;151:33–46.
Srinivasan J et al. Endophytic bacteria colonizing the petiole of the desert plant zygophyllum dumosum boiss: possible role in mitigating stress. Plants (Basel). 2022;11(4):484. https://doi.org/10.3390/plants11040484.
Ghosh D, Sen S, Mohapatra S. Drought-mitigating Pseudomonas Putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis Thaliana under water stress. Ann Microbiol. 2018;68(9):579–94.
sfahani FM TA, Hoodaji M, Ataabadi M, et Mohammadi A. I influence of exopolysaccharide-producing bacteria and SiO2 nanoparticles on proline content and antioxidant enzyme activities of tomato seedlings (Solanum lycopersicum L.) under salinity stress. Pol J Environ Stud. 2019;28(1):153–63.
Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol. 2008;50(10):1223–9.
Xiaobao Niea CZ, Jiang C, Zhang R, Guo F. Trehalose increases the oxidative stress tolerance and biocontrol efficacy of Candida Oleophila in the microenvironment of Pear wounds. Biol Control. 2019;132:23–8.
Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci. 2014;5:216.
Selmi R, et al. First report on Bartonella Henselae in dromedary camels (Camelus dromedarius). Infect Genet Evol. 2020;85:104496.
Rafaâ Trigui M, Trabelsi R, Zouari K, Agoun A. Implication of hydrogeological and hydrodynamic setting on water quality of the complex terminal aquifer in kebili (southern Tunisia): The use of geochemical indicators and modelling. J Afr Earth Sc. 2021;176:104121. https://doi.org/10.1016/j.jafrearsci.2021.104121.
Presley D, Thien S. Estimating soil texture by feel. KS: Kansas State University Agricultural Experiment Station and Cooperative Extension Service; 2008.
Boudoudou H, et al. Physico-chemical parameters and fungal flora of Moroccan rice field soils. Bull Pharm Soc Bordeaux. 2009;148:17–44.
Benslama A et al. Monitoring the variations of soil salinity in a palm grove in Southern Algeria. Sustainability. 2020;12(15):6117. https://doi.org/10.3390/su12156117.
Bai X-T, et al. Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. J Soils Sediments. 2020;21(1):1–12.
Heiri O, Lotter AF, Lemcke G. J Paleolimnol. 2001;25(1):101–10.
Ahn C, Jones S. Assessing organic matter and organic carbon contents in soils of created mitigation wetlands in Virginia. Environ Eng Res. 2013;18(3):151–6.
Amin M, Flowers TH. Evaluation of Kjeldahl digestion method. J Res (Science). 2004;15(2):159–79.
Maatoug S, Brahim N, Hatira A. Amendment of saline soils by adding sand in the old Oasis of Nefzaoua in Tunisia. Res J Appl Sci Eng Technol. 2019;16(4):153–9.
Horneck D, A, Sullivan DM, Owen. JS. and Hart. J. M, Soil test interpretation guide. Oregon State University Extension Service, 2011(EC 1478).
Peverill KI, Sparrow LA, Reuter DJ. Soil analysis: an interpretation manual. Australia; 1999.
Ren X-C, Lai Y-M, Zhang F-Y, Hu K. Test method for determination of optimum moisture content of soil and maximum dry density. KSCE J Civ Eng. 2015;19(7):2061–6.
Ramalashmi K, Magesh PVK, Sanjana K, Siril Joe R S and, K aR. A potential surface sterilization technique and culture media for the isolation of endophytic bacteria from acalypha indica and its antibacterial activity. J Med Plants Stud. 2018;6(1):181–4.
Cheng T, et al. Barcoding the Kingdom plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour. 2016;16(1):138–49.
Ikeda S, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol. 2009;58(4):703–14.
Liotti RG, et al. Diversity of cultivable bacterial endophytes in Paullinia Cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res. 2018;207:8–18.
Klindworth A, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41(1):e1.
Bolyen E, et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7.
Øyvind Hammer DATH, Ryan PD. PAST: Paleontological Statistics software package for education and data analysis Palaeontologia Electronica, 2001. 4(1): p. 9.
Douglas GM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–8.
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4.
Gaiero JR, et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot. 2013;100(9):1738–50.
van den Burg S, et al. Knowledge gaps on how to adapt crop production under changing saline circumstances in the Netherlands. Sci Total Environ. 2024;915:170118.
Choi K, Khan R, Lee SW. Dissection of plant microbiota and plant-microbiome interactions. J Microbiol. 2021;59(3):281–91.
Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42(5):669–78.
Martínez-Romero MRaE. Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact. 2006;19:827–37.
Koberl M, et al. The Microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microbiol. 2013;4:400.
Läuchli A, Grattan SR. Soil pH extremes, in Plant stress physiology. 2012. pp. 194–209.
Borowik A, Wyszkowska J. Soil moisture as a factor affecting the Microbiological and biochemical activity of soil. Plant Soil Environ. 2016;62(6):250–5.
Kushwaha P, et al. Bacterial endophyte mediated plant tolerance to salinity: growth responses and mechanisms of action. World J Microbiol Biotechnol. 2020;36(2):26.
Vaishnav A, et al. Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul. 2018;38(2):650–68.
Gao L et al. Diversity and biocontrol potential of cultivable endophytic bacteria associated with halophytes from the West Aral sea basin. Microorganisms. 2021;9(7):1448. https://doi.org/10.3390/microorganisms9071448.
Naylor D, Coleman-Derr D. Drought stress and Root-Associated bacterial communities. Front Plant Sci. 2017;8:2223.
Xu L, et al. Drought delays development of the sorghum root Microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A. 2018;115(18):E4284–93.
Liu X et al. Limited impact of soil microorganisms on the endophytic bacteria of Tartary buckwheat (Fagopyrum tataricum). Microorganisms. 2023;11(8):2085. https://doi.org/10.3390/microorganisms11082085.
Bulgarelli D, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488(7409):91–5.
Zarraonaindia I et al. The soil Microbiome influences grapevine-associated microbiota. mBio. 2015;6(2):e02527–14. https://doi.org/10.1128/mBio.02527-14.
Edwards J, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. 2015;112(8):E911–20.
Kearl J, et al. Salt-Tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Front Microbiol. 2019;10:1849.
Colin R, Jackson KCR, Shelly L, Osborn HL, Tyler. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol. 2013;13:274.
Dissanayake AJ, et al. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers. 2018;90(1):85–107.
Goulart MC, et al. Comparison of specific endophytic bacterial communities in different developmental stages of passiflora incarnata using culture-dependent and culture-independent analysis. Microbiologyopen. 2019;8(10):e896.
Wang M, et al. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ. 2020;8:e10060.
Youseif SH, et al. Comparative analysis of the cultured and total bacterial community in the wheat rhizosphere Microbiome using Culture-Dependent and Culture-Independent approaches. Microbiol Spectr. 2021;9(2):e0067821.
Navarro-Torre S, et al. Assessing the role of endophytic bacteria in the halophyte arthrocnemum macrostachyum salt tolerance. Plant Biol (Stuttg). 2017;19(2):249–56.
Dey P, Buragohain T, Osborne WJ. Inhibition of microbial pathogens and toxicity assessment of noformicin synthesized by psychrobacter faecalis: an endophyte of averrhoa Carambola. Process Biochem. 2023;134:329–40.
Ashitha A, et al. Bacterial endophytes from Artemisia nilagirica (Clarke) pamp., with antibacterial efficacy against human pathogens. Microb Pathog. 2019;135:103624.
Busoms S, Fischer S, Yant L. Chasing the mechanisms of ecologically adaptive salinity tolerance. Plant Commun. 2023;4(6):100571.
CHAKRABORTY. A.P CHOWHANP. Harnessing endophytic bacteria as plant growth promoters and biocontrol agents against pests and phytopathogens. J Mycopathol Res. 2023;61(4):435–51.
Laha A, et al. Unraveling the potential of acinetobacter calcoaceticus for arsenic resistance and plant growth promotion in contaminated lentil field. South Afr J Bot. 2024;168:61–70.
Alexander A, Singh VK, Mishra A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis Hypogaea. Front Microbiol. 2020;11:568289.
Guendouz D, et al. Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes atriplex Halimus L. and lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol Biotechnol Equip. 2022;38(16):1–30.
Solomon Enquahone G, van Marle, Simachew A. Plant growth-promoting characteristics of halotolerant endophytic bacteria isolated from sporobolus specatus (Vahr) Kunth and Cyperus laevigatus L. of Ethiopian rift Valley lakes. Archives of Microbiology, 2022. 204: pp. 1–24.
Egamberdieva D et al. Diversity and plant Growth-Promoting ability of endophytic, halotolerant bacteria associated with tetragonia tetragonioides (Pall.) Kuntze. Plants (Basel). 2021;11(1):49. https://doi.org/10.3390/plants11010049.
Vyacheslav, Shurigin, et al. Endophytic bacteria associated with halophyte Seidlitzia Rosmarinus ehrenb. Ex boiss. From saline soil of Uzbekistan and their plant beneficial traits. J Arid Land. 2020;12:730–40.
Ulrich K, et al. Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to Plant-Growth promotion and stress tolerance. Front Microbiol. 2021;12:1–14.
Kumar A, et al. Stenotrophomonas in diversified cropping systems: friend or foe? Front Microbiol. 2023;14:1214680.
Wang Z, Shao Y. Effects of microbial diversity on nitrite concentration in Pao cai, a naturally fermented cabbage product from China. Food Microbiol. 2018;72:185–92.
Xu X, Zhang M, Tao Y, Wei W. Analysis of Microbial Diversity Dominating Nitrite Enzymatic Degradation and Acidic Degradation in the Fermentation Broth of Northeast Sauerkraut. Foods, 2024. 13(24).
Grady EN, et al. Current knowledge and perspectives of paenibacillus: a review. Microb Cell Fact. 2016;15(1):203.
Kim Y-T, Monkhung S, Lee YS, Kim KY. Effects of Lysobacter antibioticus HS124, an effective biocontrol agent 2 against fusarium graminearum, on crown rot disease and growth promotion 3 of wheat. Can J Microbiol. 2019;65(12):904–12.
Lahlali R et al. Biological control of plant pathogens: A global perspective. Microorganisms. 2022;10(3):596. https://doi.org/10.3390/microorganisms10030596.
Prajwal Nimbulkar GG, Virkhare U, Althubiani AS, Dutta A, Kher D. Bacterial endophytes and their secondary metabolites: mechanisms of biosynthesis and applications in sustainable agriculture. Journal of Umm Al-Qura University for Applied Sciences; 2025.
Ameen M et al. The role of endophytes to combat abiotic stress in plants. Plant Stress, 2024;12:100435. https://doi.org/10.1016/j.stress.2024.100435.
Wozniak M, et al. Metabolic profiling of endophytic bacteria in relation to their potential application as components of Multi-Task biopreparations. Microb Ecol. 2023;86(4):2527–40.
Pan L, Cai B. Phosphate-Solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms. 2023;11(12):2904. https://doi.org/10.3390/microorganisms11122904.
Rawat P, Das S, Shankhdhar D, Shankhdhar SC. Phosphate-Solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr. 2020;21(1):49–68.
Behairi S, et al. Bacterial diversity and community structure in the rhizosphere of the halophyte halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles. 2022;26(2):18.
Gao L et al. Bacterial community structure and potential microbial coexistence mechanism associated with three halophytes adapting to the extremely hypersaline environment. Microorganisms. 2022;10(6):1124. https://doi.org/10.3390/microorganisms10061124.
Lu Y, et al. Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant paeonia ludlowii. Arch Microbiol. 2020;202(7):1717–28.
Lee E-S, et al. Distribution and characteristics of Geosmin and 2-MIB-producing actinobacteria in the Han river, Korea. Water Supply. 2020;20(5):1975–87.
Navarro-Torre S, et al. Kushneria phyllosphaerae sp. Nov. And Kushneria endophytica sp. Nov., plant growth promoting endophytes isolated from the halophyte plant arthrocnemum macrostachyum. Int J Syst Evol Microbiol. 2018;68(9):2800–6.
Moi IM, et al. The biology and the importance of Photobacterium species. Appl Microbiol Biotechnol. 2017;101(11):4371–85.
Kushkevych I et al. Distribution of Sulfate-Reducing bacteria in the environment:cryopreservation techniques and their potentialstorage application. Processes. 2021;9:1843. https://doi.org/10.3390/pr9101843.
Wang H, Cronan JE. Haemophilus influenzae Rd lacks a stringently conserved fatty acid biosynthetic enzyme and thermal control of membrane lipid composition. J Bacteriol. 2003;185(16):4930–7.
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52(3):249–76.