• Blake DP, Betson M. One health: parasites and beyond. Parasitology. 2017;144:1–6.

    PubMed 

    Google Scholar
     

  • Coulter JBS. Global importance of parasitic disease. Curr Paediatr. 2002;12:523–33.


    Google Scholar
     

  • World malaria report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.

  • Cox FEG. History of human parasitic diseases. Infect Dis Clin North Am. 2004;18:171–88.

    PubMed 

    Google Scholar
     

  • Bouchet F, Baffier D, Girard M, Morel P, Paicheler JC, David F. Palaeoparasitology in a Pleistocene context: initial observations in the Grande Grotte at Arcy-sur-Cure (Yonne), France. 1996.

  • Kjær KH, Winther Pedersen M, De Sanctis B, De Cahsan B, Korneliussen TS, Michelsen CS, et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature. 2022;612:283–91.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell PD. Parasites in Past Civilizations and their Impact upon Health. Cambridge New York: Cambridge University Press; 2023.

  • Mitchell PD. Ancient parasite analysis: exploring infectious diseases in past societies. J Archaeol Sci. 2024;170:106067.


    Google Scholar
     

  • Tams KW, Jensen Søe M, Merkyte I, Valeur Seersholm F, Henriksen PS, Klingenberg S, et al. Parasitic infections and resource economy of Danish iron age settlement through ancient DNA sequencing. PLoS ONE. 2018;13:e0197399.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss JB. DNA probes and PCR for diagnosis of parasitic infections. Clin Microbiol Rev. 1995;8:113–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh B. Molecular methods for diagnosis and epidemiological studies of parasitic infections. Int J Parasitol. 1997;27:1135–45.

    CAS 
    PubMed 

    Google Scholar
     

  • Valkiunas G, Iezhova TA, Krizanauskiene A, Palinauskas V, Sehgal RNM, Bensch S. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol. 2008;94:1395–401.

    CAS 
    PubMed 

    Google Scholar
     

  • Søe MJ, Nejsum P, Seersholm FV, Fredensborg BL, Habraken R, Haase K, et al. Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE. 2018;13:e0195481.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20:341–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franssen FFJ, Janse I, Janssen D, Caccio SM, Vatta P, van der Giessen JWB, et al. Mining public metagenomes for environmental surveillance of parasites: a proof of principle. Front Microbiol. 2021;12:622356.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chorlton SD. Ten common issues with reference sequence databases and how to mitigate them. Front Bioinform. 2024;4:1278228.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longo MS, O’Neill MJ, O’Neill RJ. Abundant human DNA contamination identified in non-primate genome databases. PLoS ONE. 2011;6:e16410.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.

    PubMed 

    Google Scholar
     

  • Astashyn A, Tvedte ES, Sweeney D, et al. Rapid and sensitive detection of genome contamination at scale with FCS-GX. Genome Biol. 2024;25:60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borner J, Burmester T. Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies. BMC Genomics. 2017;18:100.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards RJ, Chen SH, Halliday B, Bragg JG. Small but mitey: a gapless telomere-to-telomere assembly of an unidentified mite with a streamlined genome. Genome Biol Evol. 2025;17(2):evaf023.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fierst JL, Murdock DA. Decontaminating eukaryotic genome assemblies with machine learning. BMC Bioinformatics. 2017;18:533.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger M, Salzberg SL. Terminating contamination: large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 2020;21:115.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orakov A, Fullam A, Coelho LP, Khedkar S, Szklarczyk D, Mende DR, et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 2021;22:178.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje AM, Marsh SA, et al. CeMbio – the caenorhabditis elegans microbiome resource. G3 Genes|Genomes|Genetics. 2020;10(9):3025–39.

  • Ogier J-C, Pagès S, Frayssinet M, Gaudriault S. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Microbiome. 2020;8:25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15:203.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulakov L, McAlister M, Ogden K, Larkin M, O’Hanlon J. Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol. 2002;68:1548–55.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–12.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabin S, Yeh H-Y, Pluskowski A, Clamer C, Mitchell PD, Bos KI. Estimating molecular preservation of the intestinal microbiome via metagenomic analyses of latrine sediments from two medieval cities. Philos Trans R Soc Lond B Biol Sci. 2020;375:20190576.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borry M, Cordova B, Perri A, Wibowo M, Prasad Honap T, Ko J, et al. Coproid predicts the source of coprolites and paleofeces using microbiome composition and host DNA content. PeerJ. 2020;8:e9001.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagan RW, Hofman CA, Hübner A, Reinhard K, Schnorr S, Lewis CM Jr, et al. Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am J Phys Anthropol. 2020;171:275–84.

    PubMed 

    Google Scholar
     

  • Maixner F, Sarhan MS, Huang KD, Tett A, Schoenafinger A, Zingale S, et al. Hallstatt miners consumed blue cheese and beer during the iron age and retained a non-westernized gut microbiome until the baroque period. Curr Biol. 2021;31:5149-62.e6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rampelli S, Turroni S, Debandi F, Alberdi A, Schnorr SL, Hofman CA, et al. The gut microbiome buffers dietary adaptation in bronze age domesticated dogs. iScience. 2021;24:102816.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rifkin RF, Vikram S, Ramond J-B, Rey-Iglesia A, Brand TB, Porraz G, et al. Multi-proxy analyses of a mid-15th century middle iron age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the “ancestral”sub-Saharan African intestinal microbiome. Microbiome. 2020;8:1–23.


    Google Scholar
     

  • Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, Tierney BT, et al. Reconstruction of ancient microbial genomes from the human gut. Nature. 2021;594:234–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witt KE, Yarlagadda K, Allen JM, Bader AC, Simon ML, Kuehn SR, et al. Integrative analysis of DNA, macroscopic remains and stable isotopes of dog coprolites to reconstruct community diet. Sci Rep. 2021;11:3113.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, et al. The Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host Microbe. 2019;26:666-79.e7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maixner F, Krause-Kyora B, Turaev D, Herbig A, Hoopmann MR, Hallows JL, et al. The 5300-year-old Helicobacter pylori genome of the Iceman. Science. 2016;351:162–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarhan MS, Wurst C, Tzankov A, Bircher AJ, Wittig H, Briellmann T, et al. A nontuberculous mycobacterium could solve the mystery of the lady from the Franciscan church in Basel, Switzerland. BMC Biol. 2023;21:9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter MM, Olm MR, Merrill BD, Dahan D, Tripathi S, Spencer SP, et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell. 2023;186:3111-24.e13.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176:649-62.e20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3:898–908.

    CAS 
    PubMed 

    Google Scholar
     

  • Pochon Z, Bergfeldt N, Kırdök E, Vicente M, Naidoo T, van der Valk T, et al. Ameta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol. 2023;24:242.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sikora M, Canteri E, Fernandez-Guerra A, Oskolkov N, Ågren R, Hansson L, et al. The spatiotemporal distribution of human pathogens in ancient Eurasia. Nature. 2025;643:1011–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook GC. Enterobius vermicularis infection. Gut. 1994;35:1159–62.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traub RJ. Ancylostoma ceylanicum, a re-emerging but neglected parasitic zoonosis. Int J Parasitol. 2013;43:1009–15.

    PubMed 

    Google Scholar
     

  • Greigert V, Abou-Bacar A, Brunet J, Nourrisson C, Pfaff AW, Benarbia L, et al. Human intestinal parasites in Mahajanga, Madagascar: the kingdom of the protozoa. PLoS One. 2018;13:e0204576.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Helwigh AB, Christensen CM, Roepstorff A, Nansen P. Concurrent Ascaris suum and Oesophagostomum dentatum infections in pigs. Vet Parasitol. 1999;82:221–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Santos SS, de Araújo RV, Giarolla J, Seoud OE, Ferreira EI. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int J Antimicrob Agents. 2020;55:105906.

    CAS 
    PubMed 

    Google Scholar
     

  • Mwakibete L, Takahashi S, Ahyong V, Black A, Rek J, Ssewanyana I, et al. Metagenomic next-generation sequencing to characterize potential etiologies of non-malarial fever in a cohort living in a high malaria burden area of Uganda. PLOS Glob Public Health. 2023;3:e0001675.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Kasprzyk-Hordern B, Frost CG, Estrela P, Thomas KV. Community sewage sensors for monitoring public health. Environ Sci Technol. 2015;49:5845–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Whibley A, Kelley JL, Narum SR. The changing face of genome assemblies: guidance on achieving high-quality reference genomes. Mol Ecol Resour. 2021;21:641–52.

    CAS 
    PubMed 

    Google Scholar
     

  • van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, et al. Genomics in the long-read sequencing era. Trends Genet. 2023;39:649–71.

    PubMed 

    Google Scholar
     

  • de la Torre P, Merchant MT, Willms K, Laclette JP. Host cells in the spiral canal of Taenia solium (cestoda) cysticerci. J Parasitol. 1998;84:167–71.

    PubMed 

    Google Scholar
     

  • Dickson JH, Oeggl K, Holden TG, Handley LL, O’Connell TC, Preston T. The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses. Philos Trans R Soc Lond B Biol Sci. 2000;355:1843–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oskolkov N, Sandionigi A, Götherström A, et al. Unraveling the ancient fungal DNA from the Iceman gut. BMC Genomics. 2024;25:1225.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartze VU, Hoffmann K, Nyilasi I, Papp T, Vágvölgyi C, de Hoog S, et al. Lichtheimia species exhibit differences in virulence potential. PLoS One. 2012;7:e40908.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popruk S, Adao DEV, Rivera WL. Epidemiology and subtype distribution of Blastocystis in humans: a review. Infect Genet Evol. 2021;95:105085.

    CAS 
    PubMed 

    Google Scholar
     

  • AQ Kirstahler P, Aarestrup FM, Pamp SJ. Detection of parasites in microbiomes using metagenomics. bioRxiv. 2022:2022.03.27.485979.

  • Hotez PJ, Fenwick A. Schistosomiasis in Africa: an emerging tragedy in our new global health decade. PLoS Negl Trop Dis. 2009;3:e485.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Breitwieser FP, Baker DN, Salzberg SL. Krakenuniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018;19:198.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro JC, Rodriguez-R LM, Harvey WT, Weigand MR, Hatt JK, Carter MQ, et al. imGLAD: accurate detection and quantification of target organisms in metagenomes. PeerJ. 2018;6:e5882.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagar A, Hahsler M. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment. BMC Bioinformatics. 2013;14(Suppl 11):S2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bażant W, et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 2022;50:D898-911.

    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary NA, Cox E, Holmes JB, Anderson WR, Falk R, Hem V, et al. Exploring and retrieving sequence and metadata for species across the tree of life with NCBI datasets. Sci Data. 2024;11:732.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayers EW, Cavanaugh M, Clark K, Pruitt KD, Sherry ST, Yankie L, et al. GenBank 2023 update. Nucleic Acids Res. 2023;51:D141–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan AR, Hall IM. BEDtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renaud G, Hanghøj K, Willerslev E, Orlando L. gargammel: a sequence simulator for ancient DNA. Bioinformatics. 2017;33:577–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Ferragina P, Manzini G. Opportunistic data structures with applications. Proceedings 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, CA, USA. 2000;390–398. https://doi.org/10.1109/SFCS.2000.892127.

  • Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

  • R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria: 2024.

  • Fellows Yates JA, Andrades Valtueña A, Vågene ÅJ, Cribdon B, Velsko IM, Borry M, et al. Community-curated and standardised metadata of published ancient metagenomic samples with AncientMetagenomeDir. Sci Data. 2021;8:31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fellows Yates JA, Lamnidis TC, Borry M, Andrades Valtueña A, Fagernäs Z, Clayton S, et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ. 2021;9:e10947.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michelsen C, Pedersen MW, Fernandez-Guerra A, Zhao L, Petersen TC, Korneliussen TS. MetaDMG – a fast and accurate ancient DNA damage toolkit for metagenomic data. bioRxiv. 2022; Preprint at https://www.biorxiv.org/content/10.1101/2022.12.06.519264v1.

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemann J, Huang Y, Lanigan LT, Willingham-Grijalba AL, Dunn RR, Sikora M, Schroeder H. ParaRef: decontaminated parasite reference database. Github. 2025. https://doi.org/10.5281/zenodo.17193190.

  • Niemann J, Huang Y, Lanigan LT, Willingham-Grijalba AL, Dunn RR, Sikora M, Schroeder H. ParaRef. Zenodo. 2025. https://doi.org/10.5281/zenodo.13744644.