• Camacho-Conde JA, Gonzalez‐Bermudez MR, Carretero‐Rey M, Khan ZU. Brain stimulation: a therapeutic approach for the treatment of neurological disorders. CNS Neurosci Ther. 2022;28(1):5–18.

    Article 
    PubMed 

    Google Scholar
     

  • Shi Y, Wu W. Advances in transcranial focused ultrasound neuromodulation for mental disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2025;136:111244.

    Article 
    PubMed 

    Google Scholar
     

  • Badran BW, Peng X. Transcranial focused ultrasound (tFUS): a promising noninvasive deep brain stimulation approach for pain. Neuropsychopharmacology. 2024;49(1):351–2.

    Article 
    PubMed 

    Google Scholar
     

  • Kim S, Jo Y, Kook G, Pasquinelli C, Kim H, Kim K, Hoe H-S, Choe Y, Rhim H, Thielscher A. Transcranial focused ultrasound stimulation with high Spatial resolution. Brain Stimul. 2021;14(2):290–300.

    Article 
    PubMed 

    Google Scholar
     

  • Arulpragasam AR, van ‘t Wout-Frank M, Barredo J, Faucher CR, Greenberg BD, Philip NS. Low intensity focused ultrasound for Non-invasive and reversible deep brain Neuromodulation-A paradigm shift in psychiatric research. Front Psychiatry. 2022;13.

  • Fini M, Tyler WJ. Transcranial focused ultrasound: a new tool for non-invasive neuromodulation. Int Rev Psychiatry. 2017;29(2):168–77.

    Article 
    PubMed 

    Google Scholar
     

  • Scangos KW, State MW, Miller AH, Baker JT, Williams LM. New and emerging approaches to treat psychiatric disorders. Nat Med. 2023;29(2):317–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahoney JJ III, Hanlon CA, Marshalek PJ, Rezai AR, Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: review of modalities and implications for treatment. J Neurol Sci. 2020;418:117149.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh A, Erwin-Grabner T, Goya-Maldonado R, Antal A. Transcranial magnetic and direct current stimulation in the treatment of depression: basic mechanisms and challenges of two commonly used brain stimulation methods in interventional psychiatry. Neuropsychobiology. 2020;79(6):397–407.

    Article 
    PubMed 

    Google Scholar
     

  • Cohen SL, Bikson M, Badran BW, George MS. A visual and narrative timeline of US FDA milestones for transcranial magnetic stimulation (TMS) devices. Brain Stimul. 2021;15(1):73.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller D, Habel U, Brodkin ES, Weidler C. High-definition transcranial direct current stimulation (HD-tDCS) for the enhancement of working memory–A systematic review and meta-analysis of healthy adults. Brain Stimul. 2022;15(6):1475–85.

    Article 
    PubMed 

    Google Scholar
     

  • Darrow DP, O’Brien P, Richner TJ, Netoff TI, Ebbini ES. Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul. 2019;12(6):1439–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paun L, Moiraghi A, Jannelli G, Nouri A, DiMeco F, Pallud J, Meling TR, Momjian S, Schaller K, Prada F. From focused ultrasound tumor ablation to brain blood barrier opening for high grade glioma: a systematic review. Cancers. 2021;13(22):5614.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna V, Sammartino F, Rezai A. A review of the current Therapies, Challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246–54.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial focused ultrasound neuromodulation: A review of the excitatory and inhibitory effects on brain activity in human and animals. Front Hum Neurosci. 2021;15:749162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu K, Niu X, Krook-Magnuson E, He B. Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat Commun. 2021;12(1):2519.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: A systematic review of the state of knowledge from both human and animal studies. Brain Stimul. 2019;12(6):1367–80.

    Article 
    PubMed 

    Google Scholar
     

  • Mohammadjavadi M, Ye PP, Xia A, Brown J, Popelka G, Pauly KB. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 2019;12(4):901–U910. https://linkinghub.elsevier.com/retrieve/pii/S1935861X19300841.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foundation FU. State of the field report 2024. In.: Focused Ultrasound Foundation; 2024.

  • Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med Biol. 2019;45(7):1509–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radjenovic S, Dörl G, Gaal M, Beisteiner R. Safety of clinical ultrasound neuromodulation. Brain Sci. 2022;12(10):1277.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarica C, Nankoo J-F, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN. Human studies of transcranial ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul. 2022;15(3):737–46.

    Article 
    PubMed 

    Google Scholar
     

  • Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul. 2024;17(4):734–U751. https://linkinghub.elsevier.com/retrieve/pii/S1935861X24001037.

    Article 
    PubMed 

    Google Scholar
     

  • Dell’Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Front Hum Neurosci. 2022;16:872639.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi Y, Wu W. Advances in transcranial focused ultrasound neuromodulation for mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025:111244.

  • Matt E, Radjenovic S, Mitterwallner M, Beisteiner R. Current state of clinical ultrasound neuromodulation. Front NeuroSci. 2024;18:1420255.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beisteiner R, Hallett M, Lozano AM. Ultrasound neuromodulation as a new brain therapy. Adv Sci 2023, 10(14):2205634%* © 2202023 The Authors. Advanced Science published by Wiley-VCH GmbH %U https://onlinelibrary.wiley.com/doi/2205610.2201002/advs.202205634.

  • Yoo S-S, Kim H, Filandrianos E, Taghados SJ, Park S. Non-Invasive Brain-to-Brain interface (BBI): Establishing functional links between two brains. PLoS One 2013, 8(4).

  • Dong S, Yan J, Xie Z, Yuan Y, Ji H. Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation. J Neural Eng. 2022;19(6).

  • Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol. 2018;75(2):246.

    Article 
    PubMed 

    Google Scholar
     

  • Zhong Y-X, Liao J-C, Liu X, Tian H, Deng L-R, Long L. Low intensity focused ultrasound: a new prospect for the treatment of parkinson’s disease. Ann Med. 2023;55(2):2251145.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowary P, Greenberg BD. Noninvasive focused ultrasound for neuromodulation: a review. Psychiatr Clin North Am. 2018;41(3):505–14.

    Article 
    PubMed 

    Google Scholar
     

  • Deveney CM, Surya JR, Haroon JM, Mahdavi KD, Hoffman KR, Enemuo KC, Jordan KG, Becerra SA, Kuhn T, Bystritsky A, et al. Transcranial focused ultrasound for the treatment of tremor: A preliminary case series. Brain Stimul. 2024;17(1):35–U38. https://linkinghub.elsevier.com/retrieve/pii/S1935861X2301968X.

    Article 
    PubMed 

    Google Scholar
     

  • Cain J, Spivak N, Coetzee J, Crone J, Johnson M, Lutkenhoff E, Real C, Buitrago-Blanco M, Vespa P, Schnakers C, et al. Ultrasonic thalamic stimulation in chronic disorders of consciousness. Brain Stimul. 2021;14(2):301–3.

    Article 
    PubMed 

    Google Scholar
     

  • Shin DH, Son S, Kim EY. Low-energy transcranial navigation-guided focused ultrasound for neuropathic pain: an exploratory study. Brain Sci. 2023;13(10):1433.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahdavi K, Jordan S, Habelhah B, Zielinski M, Haroon J, Becerra S, Spivak N, Bystritsky A, Kuhn T. A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. Brain Stimul. 2021;14(6):1627.

    Article 

    Google Scholar
     

  • Lee W, Weisholtz DS, Strangman GE, Yoo S-S. Safety review and perspectives of transcranial focused ultrasound brain stimulation. Brain Neurorehabilitation. 2021;14(1):e4U. https://e-bnr.org/DOIx.php?id=10.12786/bn.12021.12714.e12784.

    Article 

    Google Scholar
     

  • King RL, Brown JR, Newsome WT, Pauly KB. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol. 2013;39(2):312–31. https://www.elsevier.com/tdm/userlicense/311.310/ %U https://linkinghub.elsevier.com/retrieve/pii/S0301562912005753.

    Article 
    PubMed 

    Google Scholar
     

  • Legon W, Strohman A. Low-intensity focused ultrasound for human neuromodulation. Nat Reviews Methods Primers. 2024;4(1):91.

    Article 

    Google Scholar
     

  • Darmani G, Bergmann T, Pauly KB, Caskey C, De Lecea L, Fomenko A, Fouragnan E, Legon W, Murphy K, Nandi T. Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin Neurophysiol. 2022;135:51–73.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang T, Pan N, Wang Y, Liu C, Hu S. Transcranial focused ultrasound neuromodulation: A review of the excitatory and inhibitory effects on brain activity in human and animals. Front Human Neurosci. 2021;15:749162. https://www.frontiersin.org/articles/749110.743389/fnhum.742021.749162/full

  • Grippe T, Shamli-Oghli Y, Darmani G, Nankoo JF, Raies N, Sarica C, Arora T, Gunraj C, Ding MYR, Rinchon C et al. Plasticity‐induced effects of theta burst transcranial ultrasound stimulation in parkinson’s disease. Mov Disord. 2024:mds29836.

  • Samuel N, Zeng K, Harmsen IE, Ding MYR, Darmani G, Sarica C, Santyr B, Vetkas A, Pancholi A, Fomenko A, et al. Multi-modal investigation of transcranial ultrasound-induced neuroplasticity of the human motor cortex. Brain Stimul. 2022;15(6):1337–47.

    Article 
    PubMed 

    Google Scholar
     

  • Gupta S, Mudhafar M, Borole YD, Mahalakshmi V, Ramesh JVN, Khan MA. Optimizing transcranial focused ultrasound parameters: A methodological advancement in Non-invasive brain stimulation for Next-Gen clinical applications. Neurosci Inf. 2025:100204.

  • Samuel N, Ding MYR, Sarica C, Darmani G, Harmsen IE, Grippe T, Chen X, Yang A, Nasrkhani N, Zeng K, et al. Accelerated transcranial ultrasound neuromodulation in parkinson’s disease: A pilot study. Mov Disord. 2023;38(12):2209–16.

    Article 
    PubMed 

    Google Scholar
     

  • Riis TS, Feldman DA, Losser AJ, Okifuji A, Kubanek J. Noninvasive targeted modulation of pain circuits with focused ultrasonic waves. Pain. 2024;165(12):2829–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, Yamaguchi H, Angelakos CC, Choi M, Bian W. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron. 2024;112(19):3252–66. e3255.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nandi T, Kop BR, Naftchi-Ardebili K, Stagg CJ, Pauly KB, Verhagen L. Biophysical effects and neuromodulatory dose of transcranial ultrasonic stimulation. Brain Stimul. 2025;18(3):659–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin E, Aubry J-F, Schafer M, Verhagen L, Treeby B, Pauly KB. ITRUSST consensus on standardised reporting for transcranial ultrasound stimulation. Brain Stimul. 2024;17(3):607–U615. https://linkinghub.elsevier.com/retrieve/pii/S1935861X24000718.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aubry J-F, Attali D, Schafer M, Fouragnan E, Caskey C, Chen R, Darmani G, Bubrick EJ, Sallet J, Butler C. ITRUSST consensus on biophysical safety for transcranial ultrasonic stimulation. ArXiv Preprint arXiv:231105359. 2023.

  • Legon W, Adams S, Bansal P, Patel PD, Hobbs L, Ai L, Mueller JK, Meekins G, Gillick BT. A retrospective qualitative report of symptoms and safety from transcranial focused ultrasound for neuromodulation in humans. Sci Rep. 2020;10(1):5573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun. 2022;13(1):493.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorum B, Rietmeijer RA, Gopakumar K, Adesnik H, Brohawn SG. Ultrasound activates mechanosensitive TRAAK K + channels through the lipid membrane. Proc Natl Acad Sci. 2021;118(6):e2006980118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wen Y, Lin M, Liu J, Tang J, Qi X. Low-intensity ultrasound activates transmembrane chloride flow through CFTR. Biochem Biophys Rep. 2024;37:101604.

    PubMed 

    Google Scholar
     

  • Dell’Italia J, Sanguinetti JL, Monti MM, Bystritsky A, Reggente N. Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Front Hum Neurosci. 2022;16:872639U. https://www.frontiersin.org/articles/872610.873389/fnhum.872022.872639/full.

    Article 

    Google Scholar
     

  • Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE. 2008;3(10):e3511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clennell B, Steward TGJ, Hanman K, Needham T, Benachour J, Jepson M, Elley M, Halford N, Heesom K, Shin E, et al. Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. Brain Stimul. 2023;16(2):540–52.

    Article 
    PubMed 

    Google Scholar
     

  • Prieto ML, Madison DV, Khuri-Yakub BT, Maduke M. Focused ultrasound activates task potassium channels, increases membrane capacitance, and modulates action potential waveform and firing properties in hippocampal brain slices. Biophys J. 2018;114(3):669a.

    Article 

    Google Scholar
     

  • Newman M, Rasiah PK, Kusunose J, Rex TS, Mahadevan-Jansen A, Hardenburger J, Jansen ED, Millis B, Caskey CF. Ultrasound modulates calcium activity in cultured neurons, glial cells, endothelial cells and pericytes. Ultrasound Med Biol. 2024;50(3):341–51.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao L, Feng Y, Hu H, Shi A, Zhang L, Wan M. Low-intensity pulsed ultrasound enhances nerve growth factor-induced neurite outgrowth through mechanotransduction-mediated ERK1/2–CREB–trx-1 signaling. Ultrasound Med Biol. 2016;42(12):2914–2925. https://www.umbjournal.org/article/S0301-5629(2916)30176-30174/abstract

  • Li Z, Chen R, Liu D, Wang X, Yuan W. Effect of low-intensity transcranial ultrasound stimulation on theta and gamma oscillations in the mouse hippocampal CA1. Front Psychiatry. 2023;14.

  • Kim H-J, Phan TT, Lee K, Kim JS, Lee S-Y, Lee JM, Do J, Lee D, Kim S-P, Lee KP. Long-lasting forms of plasticity through patterned ultrasound-induced brainwave entrainment. Sci Adv. 2024;10(8):eadk3198.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jo Y, Liang X, Nguyen HH, Choi Y, Choi M, Bae G-E, Cho Y, Woo J, Lee HJ. Selective manipulation of excitatory and inhibitory neurons in top-down and bottom-up visual pathways using ultrasound stimulation. Brain Stimul. 2025;18(3):848–62.

    Article 
    PubMed 

    Google Scholar
     

  • Wang X, Zhang Y, Zhang K, Yuan Y. Influence of behavioral state on the neuromodulatory effect of low-intensity transcranial ultrasound stimulation on hippocampal CA1 in mouse. NeuroImage. 2021;241:118441.

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen DT, Berisha DE, Konofagou EE, Dmochowski JP. Neuronal responses to focused ultrasound are gated by pre-stimulation brain rhythms. Brain Stimul. 2022;15(1):233–43.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan Y, Yan J, Ma Z, Li X. Effect of noninvasive focused ultrasound stimulation on gamma oscillations in rat hippocampus. NeuroReport. 2016;27(7):508–15.

    Article 
    PubMed 

    Google Scholar
     

  • Yang PS, Kim H, Lee W, Bohlke M, Park S, Maher TJ, Yoo S-S. Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology. 2012;65(3):153–60.

    Article 
    PubMed 

    Google Scholar
     

  • Min B-K, Yang PS, Bohlke M, Park S, R.Vago D, Maher TJ, Yoo S-S. Focused ultrasound modulates the level of cortical neurotransmitters: potential as a new functional brain mapping technique. Int J Imaging Syst Technol. 2011;21(2):232–40.

    Article 

    Google Scholar
     

  • Tseng H-a, Sherman J, Bortz E, Mohammed A, Gritton HJ, Bensussen S, Tang RP, Zemel D, Szabo T, Han X. Region-specific effects of ultrasound on individual neurons in the awake mammalian brain. iScience. 2021;24(9):102955U. https://linkinghub.elsevier.com/retrieve/pii/S2589004221009238.

    Article 

    Google Scholar
     

  • Cain JA, Visagan S, Johnson MA, Crone J, Blades R, Spivak NM, Shattuck DW, Monti MM. Real time and delayed effects of subcortical low intensity focused ultrasound. Sci Rep. 2021;11(1):6100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan Y, Wang Z, Liu M, Shoham S. Cortical hemodynamic responses induced by low-intensity transcranial ultrasound stimulation of mouse cortex. NeuroImage. 2020;211:116597.

    Article 
    PubMed 

    Google Scholar
     

  • Bian N, Yuan Y, Li X. Effects of transcranial ultrasound stimulation on blood oxygen metabolism and brain rhythms in nitroglycerin-induced migraine mice. Neuromodulation: Technol Neural Interface. 2024;27:842–834.

    Article 

    Google Scholar
     

  • Patwardhan A, Wilkinson T, Meng Y, Alhashyan I, Black SE, Lipsman N, Masellis M. Safety, efficacy and clinical applications of focused Ultrasound-Mediated blood brain barrier opening in alzheimer’s disease: A systematic review. J Prev Alzheimer’s Disease. 2024;11(4):975–82.

    Article 

    Google Scholar
     

  • Hellman A, Clum A, Maietta T, Srikanthan A, Patel V, Panse D, Zimmerman O, Neubauer P, Nalwalk J, Williams E, et al. Effects of external low intensity focused ultrasound on inflammatory markers in neuropathic pain. Neurosci Lett. 2021;757:135977.

    Article 
    PubMed 

    Google Scholar
     

  • Liu S-H, Lai Y-L, Chen B-L, Yang F-Y. Ultrasound enhances the expression of Brain-Derived neurotrophic factor in astrocyte through activation of TrkB-Akt and Calcium-CaMK signaling pathways. Cereb Cortex. 2017;27(6):3152–60.

    PubMed 

    Google Scholar
     

  • Ji N, Li Y, Wei J, Chen F, Xu L, Li G, Lin W-H. Autonomic modulation by low-intensity focused ultrasound stimulation of the vagus nerve. J Neural Eng. 2022;19(6):066036.

    Article 

    Google Scholar
     

  • Wu C, He J, Zhu Y, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Ultrasound neuromodulation ameliorates chronic corticosterone-induced depression- and anxiety-like behaviors in mice. J Neural Eng. 2023;20(3):036037.

    Article 

    Google Scholar
     

  • Li D, Cao F, Han J, Wang M, Lai C, Zhang J, Xu T, Bouakaz A, Wan M, Ren P. The sustainable antihypertensive and target organ damage protective effect of transcranial focused ultrasound stimulation in spontaneously hypertensive rats. J Hypertens. 2023;41(5):852–66.

    Article 
    PubMed 

    Google Scholar
     

  • Florez-Paz DM, Tong C-K, Hoffman BU, Lee SA, Konofagou EE, Lumpkin EA. Focused ultrasound evoked responses in dorsal root ganglion neurons (DRG) and HEK293 cells. Biophys J. 2018;114(3):673. https://www.elsevier.com/tdm/userlicense/671.670/. %U https://linkinghub.elsevier.com/retrieve/pii/S0006349517348592.

    Article 

    Google Scholar
     

  • Hwang S, Jun SB. Ultrasound neuromodulation of cultured hippocampal neurons. Biomed Eng Lett. 2024;14(1):79–U89. https://doi.org/10.1007/s13534-13023-00314-13537. https://link.springer.com/.

    Article 
    PubMed 

    Google Scholar
     

  • Cox SS, Connolly DJ, Peng X, Badran BW. A comprehensive review of low-intensity focused ultrasound parameters and applications in neurologic and psychiatric disorders. Neuromodulation: Technol Neural Interface. 2025;28(1):1–15.

    Article 

    Google Scholar
     

  • King RL, Brown JR, Pauly KB. Localization of ultrasound-induced in vivo neurostimulation in the mouse model. Ultrasound Med Biol. 2014;40(7):1512–U1522. https://linkinghub.elsevier.com/retrieve/pii/S0301562914000696.

    Article 
    PubMed 

    Google Scholar
     

  • Aurup C, Kamimura HAS, Konofagou EE. High-Resolution focused ultrasound neuromodulation induces Limb-Specific motor responses in mice in vivo. Ultrasound Med Biol. 2021;47(4):998–1013.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng K, Li Z, Xia X, Wang Z, Darmani G, Li X, Chen R. Effects of different sonication parameters of theta burst transcranial ultrasound stimulation on human motor cortex. Brain Stimul. 2024;17(2):258–68.

    Article 
    PubMed 

    Google Scholar
     

  • Bao S, Kim H, Shettigar NB, Li Y, Lei Y. Personalized depth-specific neuromodulation of the human primary motor cortex via ultrasound. J Physiol-Lond. 2024;602(5):933–48.

    Article 

    Google Scholar
     

  • Kim H-C, Lee W, Kunes J, Yoon K, Lee JE, Foley L, Kowsari K, Yoo S-S. Transcranial focused ultrasound modulates cortical and thalamic motor activity in awake sheep. Sci Rep. 2021;11(1):19274.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HC, Lee W, Kowsari K, Weisholtz DS, Yoo SS. Effects of focused ultrasound pulse duration on stimulating cortical and subcortical motor circuits in awake sheep. PLoS One. 2022;17(12):e0278865.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oghli YS, Grippe T, Arora T, Hoque T, Darmani G, Chen R. Mechanisms of theta burst transcranial ultrasound induced plasticity in the human motor cortex. Brain Stimul. 2023;16(4):1135–43.

    Article 

    Google Scholar
     

  • Zeng K, Darmani G, Fomenko A, Xia X, Tran S, Nankoo JF, Shamli Oghli Y, Wang Y, Lozano AM, Chen R. Induction of human motor cortex plasticity by theta burst transcranial ultrasound stimulation. Ann Neurol. 2022;91(2):238–52.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang T, Guo B, Zuo Z, Long X, Hu S, Li S, Su X, Wang Y, Liu C. Excitatory-inhibitory modulation of transcranial focus ultrasound stimulation on human motor cortex. CNS Neurosci Ther. 2023;29(12):3829–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fomenko A, Chen K-HS, Nankoo J-F, Saravanamuttu J, Wang Y, El-Baba M, Xia X, Seerala SS, Hynynen K, Lozano AM, et al. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. eLife. 2020;9:e54497. https://elifesciences.org/articles/54497.

    Article 

    Google Scholar
     

  • Bancel T, Béranger B, Daniel M, Didier M, Santin M, Rachmilevitch I, Shapira Y, Tanter M, Bardinet E, Vidal SF. Sustained reduction of essential tremor with low-power non-thermal transcranial focused ultrasound stimulations in humans. Brain Stimul. 2024;17(3):636–47.

    Article 
    PubMed 

    Google Scholar
     

  • Liang B, Wang S, Shen F, Liu QH, Gong Y, Yao J. Acoustic impact of the human skull on transcranial photoacoustic imaging. Biomedical Opt Express. 2021;12(3):1512–28.

    Article 

    Google Scholar
     

  • Munoz F, Meaney A, Gross A, Liu K, Pouliopoulos AN, Liu D, Konofagou EE, Ferrera VP. Long term study of motivational and cognitive effects of low-intensity focused ultrasound neuromodulation in the dorsal striatum of nonhuman primates. Brain Stimul. 2022;15(2):360–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubanek J, Brown J, Ye P, Pauly KB, Moore T, Newsome W. Remote, brain region–specific control of choice behavior with ultrasonic waves. Sci Adv. 2020;6(21):eaaz4193. https://www.science.org/doi/4110.1126/sciadv.aaz4193.

    Article 

    Google Scholar
     

  • Fine JM, Mysore AS, Fini ME, Tyler WJ, Santello M. Transcranial focused ultrasound to human rIFG improves response Inhibition through modulation of the P300 onset latency. Elife. 2023;12.

  • Blackmore DG, Turpin F, Mohamed AZ, Zong F, Pandit R, Pelekanos M, Nasrallah F, Sah P, Bartlett PF, Götz J. Multimodal analysis of aged wild-type mice exposed to repeated scanning ultrasound treatments demonstrates long-term safety. Theranostics. 2018;8(22):6233–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Z, Dong S, Zhang Y, Yuan Y. Transcranial ultrasound stimulation at the peak-phase of theta-cycles in the hippocampus improve memory performance. NeuroImage. 2023;283:120423.

    Article 
    PubMed 

    Google Scholar
     

  • Nakajima K, Osada T, Ogawa A, Tanaka M, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. A causal role of anterior prefrontal-putamen circuit for response Inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep. 2022;40(7).

  • Blackmore DG, Turpin F, Palliyaguru T, Evans HT, Chicoteau A, Lee W, Pelekanos M, Nguyen N, Song J, Sullivan RKP, et al. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol Psychiatry. 2021;26(11):6975–6991. https://www.nature.com/articles/s41380-41021-01129-41387.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJ, Hewig J. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia. 2023;187108589. https://linkinghub.elsevier.com/retrieve/pii/S0028393223001239

  • Wang Y, Niu L, Meng W, Lin Z, Zou J, Bian T, Huang X, Zhou H, Meng L, Xie P, et al. Ultrasound stimulation of periaqueductal Gray induces defensive behaviors. Ieee Trans Ultrason Ferroelectr Freq Control. 2021;68(1):38–45.

    Article 
    PubMed 

    Google Scholar
     

  • Chou T, Deckersbach T, Guerin B, Sretavan Wong K, Borron BM, Kanabar A, Hayden AN, Long MP, Daneshzand M, Pace-Schott EF, et al. Transcranial focused ultrasound of the amygdala modulates fear network activation and connectivity. Brain Stimul. 2024;17(2):312–20.

    Article 
    PubMed 

    Google Scholar
     

  • Chou T, Long M, Hayden A, Wong KS, Borron B, Kanabar A, Deckersbach T, Dougherty D. Transcranial focused ultrasound of the amygdala down-modulates fear neural circuit activation and facilitates fear extinction. Biol Psychiatry. 2023;93(9):38.

    Article 

    Google Scholar
     

  • Sanguinetti JL, Hameroff S, Smith EE, Sato T, Daft CM, Tyler WJ, Allen JJ. Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front Hum Neurosci. 2020:52.

  • Lee J, Kim YE, Lim J, Jo Y, Lee HJ, Jo YS, Choi J-S. Transcranial focused ultrasound stimulation in the infralimbic cortex facilitates extinction of conditioned fear in rats. Brain Stimul. 2024;17(2):405–12.

    Article 
    PubMed 

    Google Scholar
     

  • Guo H, Baker G, Hartle K, Fujiwara E, Wang J, Zhang Y, Xing J, Lyu H, Li X-M, Chen J. Exploratory study on neurochemical effects of low-intensity pulsed ultrasound in brains of mice. Med Biol Eng Comput. 2021;59(5):1099–110.

    Article 
    PubMed 

    Google Scholar
     

  • Kim YG, Kim SE, Lee J, Hwang S, Yoo S-S, Lee HW. Neuromodulation using transcranial focused ultrasound on the bilateral medial prefrontal cortex. J Clin Med. 2022;11(13):3809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee W, Kim H, Jung Y, Song I-U, Chung YA, Yoo S-S. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5(1):8743. https://www.nature.com/articles/srep08743.

    Article 

    Google Scholar
     

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9.

    Article 
    PubMed 

    Google Scholar
     

  • Fisher JAN, Gumenchuk I. Low-intensity focused ultrasound alters the latency and Spatial patterns of sensory-evoked cortical responses in vivo. J Neural Eng. 2018;15(3):035004.

    Article 
    PubMed 

    Google Scholar
     

  • Yoo SS, Yoon K, Croce P, Cammalleri A, Margolin RW, Lee W. Focused ultrasound brain stimulation to anesthetized rats induces long-term changes in somatosensory evoked potentials. Int J Imaging Syst Technol. 2018;28(2):106–12.

    Article 
    PubMed 

    Google Scholar
     

  • Ramachandran S, Niu X, Yu K, He B. Transcranial ultrasound neuromodulation induces neuronal correlation change in the rat somatosensory cortex. J Neural Eng, 2022;19(5).

  • Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018;39(5):1995–2006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee W, Kim H-C, Jung Y, Chung YA, Song I-U, Lee J-H, Yoo S-S. Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep. 2016;6(1):34026U. https://www.nature.com/articles/srep34026.

    Article 

    Google Scholar
     

  • Schimek N, Burke-Conte Z, Abernethy J, Schimek M, Burke-Conte C, Bobola M, Stocco A, Mourad PD. Repeated application of transcranial diagnostic ultrasound towards the visual cortex induced illusory visual percepts in healthy participants. Front Hum Neurosci. 2020;14. https://www.frontiersin.org/journals/human-neuroscience/articles/https://doi.org/10.3389/fnhum.2020.00066/full.

  • Daniels D, Sharabi S, Last D, Guez D, Salomon S, Zivli Z, Castel D, Volovick A, Grinfeld J, Rachmilevich I, et al. Focused ultrasound-induced suppression of auditory evoked potentials in vivo. Ultrasound Med Biol. 2018;44(5):1022–30.

    Article 
    PubMed 

    Google Scholar
     

  • Wang T, Wang X, Tian Y, Gang W, Li X, Yan J, Yuan Y. Modulation effect of low-intensity transcranial ultrasound stimulation on REM and NREM sleep. Cereb Cortex. 2023;33(9):5238–50. https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model %U https://academic.oup.com/cercor/article/5233/5239/5238/6827182.

    Article 
    PubMed 

    Google Scholar
     

  • Jo Y, Lee SM, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, et al. General-purpose ultrasound neuromodulation system for chronic, closed‐loop preclinical studies in freely behaving rodents. Adv Sci. 2022;9(34):2202345. https://onlinelibrary.wiley.com/doi/2202310.2201002/advs.202202345.

    Article 

    Google Scholar
     

  • Dong S, Xie Z, Yuan Y. Transcranial ultrasound stimulation modulates neural activities during NREM and REM depending on the stimulation phase of slow oscillations and theta waves in the hippocampus. Cereb Cortex. 2023;33(14):8956–66. https://academic.oup.com/pages/standard-publication-reuse-rights %U https://academic.oup.com/cercor/article/8933/8914/8956/7177313.

    Article 
    PubMed 

    Google Scholar
     

  • Park M, Hoang GM, Nguyen T, Lee E, Jung HJ, Choe Y, Lee MH, Hwang JY, Kim JG, Kim T. Effects of transcranial ultrasound stimulation pulsed at 40 hz on aβ plaques and brain rhythms in 5×FAD mice. Translational Neurodegeneration. 2021;10(1):48. https://doi.org/10.1186/s40035-40021-00274-x. https://translationalneurodegeneration.biomedcentral.com/articles/.

    Article 

    Google Scholar
     

  • Poon CT, Shah K, Lin C, Tse R, Kim KK, Mooney S, Aubert I, Stefanovic B, Hynynen K. Time course of focused ultrasound effects on β-amyloid plaque pathology in the TgCRND8 mouse model of alzheimer’s disease. Sci Rep. 2018;8(1):14061. https://www.nature.com/articles/s41598-14018-32250-14063.

    Article 

    Google Scholar
     

  • Sun T, Shi Q, Zhang Y, Power C, Hoesch C, Antonelli S, Schroeder MK, Caldarone BJ, Taudte N, Schenk M, et al. Focused ultrasound with anti-pGlu3 aβ enhances efficacy in alzheimer’s disease-like mice via recruitment of peripheral immune cells. J Controll Release. 2021;336:443–456. https://linkinghub.elsevier.com/retrieve/pii/S0168365921003357.

    Article 

    Google Scholar
     

  • Karakatsani ME, Ji R, Murillo MF, Kugelman T, Kwon N, Lao Y-H, Liu K, Pouliopoulos AN, Honig LS, Duff KE, et al. Focused ultrasound mitigates pathology and improves Spatial memory in alzheimer’s mice and patients. Theranostics. 2023;13(12):4102–4120. https://www.thno.org/v4113p4102.htm.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong H, Song I-U, Chung Y-A, Park J-S, Na S-H, Im JJ, Bikson M, Lee W, Yoo S-S: Short-term efficacy of transcranial focused ultrasound to the hippocampus in alzheimer’s disease: A preliminary study. 2022, 12(2):250. %* https://creativecommons.org/licenses/by/254.250/ %U https://www.mdpi.com/2075-4426/2012/2072/2250.

  • Pandit R, Leinenga G, Götz J. Repeated ultrasound treatment of Tau Transgenic mice clears neuronal Tau by autophagy and improves behavioral functions. Theranostics. 2019;9(13):3754–3767. http://www.thno.org/v3709p3754.htm.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eguchi K, Shindo T, Ito K, Ogata T, Kurosawa R, Kagaya Y, Monma Y, Ichijo S, Kasukabe S, Miyata S, et al. Whole-brain low-intensity pulsed ultrasound therapy markedly improves cognitive dysfunctions in mouse models of dementia – crucial roles of endothelial nitric oxide synthase. Brain Stimul. 2018;11(5):959–73.

    Article 
    PubMed 

    Google Scholar
     

  • Lin W-T, Chen R-C, Lu W-W, Liu S-H, Yang F-Y. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in alzheimer’s disease rat model. Sci Rep. 2015;5(1):9671. https://www.nature.com/articles/srep09671.

    Article 

    Google Scholar
     

  • Shimokawa H, Shindo T, Ishiki A, Tomita N, Ichijyo S, Watanabe T, Nakata T, Eguchi K, Kikuchi Y, Shiroto T, et al. A pilot study of whole-brain low-intensity pulsed ultrasound therapy for early stage of alzheimer’s disease (LIPUS-AD): A randomized, double-blind, placebo-controlled trial. Tohoku J Exp Med. 2022;258(3):167–175. https://www.jstage.jst.go.jp/article/tjem/258/163/258_2022.J2078/_article.

    Article 
    PubMed 

    Google Scholar
     

  • Jeong H, Im JJ, Park J-S, Na S-H, Lee W, Yoo S-S, Song I-U, Chung Y-A. A pilot clinical study of low-intensity transcranial focused ultrasound in alzheimer’s disease. Ultrasonography. 2021;40(4):512–519. http://www.e-ultrasonography.org/journal/view.php?doi=510.14366/usg.20138.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao L, Feng Y, Shi A, Zhang L, Guo S, Wan M. Neuroprotective effect of low-intensity pulsed ultrasound against MPP + -induced neurotoxicity in PC12 cells: involvement of K2P channels and stretch-activated ion channels. Ultrasound Med Biol. 2017;43(9):1986–99.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou H, Meng L, Xia X, Lin Z, Zhou W, Pang N, Bian T, Yuan T, Niu L, Zheng H. Transcranial ultrasound stimulation suppresses neuroinflammation in a chronic mouse model of parkinson’s disease. IEEE Trans Biomed Eng. 2021;68(11):3375–87.

    Article 
    PubMed 

    Google Scholar
     

  • Zhong Y-X, Liao J-C, Liu X, Tian H, Deng L-R, Long L. Low intensity focused ultrasound: A new prospect for the treatment of parkinson’s disease. Ann Med. 2023;55(2):2251145. https://www.tandfonline.com/doi/full/2251110.2251080/07853890.07852023.02251145.

  • Yuan Y, Zhao Z, Wang Z, Wang X, Yan J, Li X. The effect of low-intensity transcranial ultrasound stimulation on behavior in a mouse model of parkinson’s disease induced by MPTP. IEEE Trans Neural Syst Rehabil Eng. 2020;28(4):1017–21.

    Article 
    PubMed 

    Google Scholar
     

  • Zhao Z, Ji H, Pei J, Yan J, Zhang X, Yuan Y, Liu M. Transcranial ultrasound stimulation improves memory performance of parkinsonian mice. IEEE Trans Neural Syst Rehabil Eng. 2024;32:1284–91.

    Article 
    PubMed 

    Google Scholar
     

  • Nicodemus NE, Becerra S, Kuhn TP, Packham HR, Duncan J, Mahdavi K, Iovine J, Kesari S, Pereles S, Whitney M et al. Focused transcranial ultrasound for treatment of neurodegenerative dementia. Alzheimer’s & Dementia: Translational Research & Clinical Interventions. 2019;5(1):374–381. https://alz-journals.onlinelibrary.wiley.com/doi/310.1016/j.trci.2019.1006.1007.

  • Riis TS, Losser AJ, Kassavetis P, Moretti P, Kubanek J. Noninvasive modulation of essential tremor with focused ultrasonic waves. J Neural Eng. 2024;21(1):016033.

    Article 

    Google Scholar
     

  • Sharabi S, Daniels D, Last D, Guez D, Zivli Z, Castel D, Levy Y, Volovick A, Grinfeld J, Rachmilevich I, et al. Non-thermal focused ultrasound induced reversible reduction of essential tremor in a rat model. Brain Stimul. 2019;12(1):1–8. https://linkinghub.elsevier.com/retrieve/pii/S1935861X18302973.

    Article 
    PubMed 

    Google Scholar
     

  • McIntyre RS, Alsuwaidan M, Baune BT, Berk M, Demyttenaere K, Goldberg JF, Gorwood P, Ho R, Kasper S, Kennedy SH. Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry. 2023;22(3):394–412.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domschke K, Seuling PD, Schiele MA, Bandelow B, Batelaan NM, Bokma WA, Branchi I, Broich K, Burkauskas J, Davies SJ. The definition of treatment resistance in anxiety disorders: a Delphi method-based consensus guideline. World Psychiatry. 2024;23(1):113–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howes OD, Thase ME, Pillinger T. Treatment resistance in psychiatry: state of the Art and new directions. Mol Psychiatry. 2022;27(1):58–72.

    Article 
    PubMed 

    Google Scholar
     

  • Wang F, Cai Q, Ju R, Wang S, Liu L, Pan M, Sun N, Wang X, Wang L, Yang J, et al. Low-intensity focused ultrasound ameliorates depression-like behaviors associated with improving the synaptic plasticity in the vCA1-mPFC pathway. Cereb Cortex. 2023;33(12):8024–34.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Wang S, Mo W, Li Y, Yang Q, Tian Y, Zheng C, Yang J, Ming D. Ultrasound stimulation attenuates CRS-induced depressive behavior by modulating dopamine release in the prefrontal cortex. IEEE Trans Neural Syst Rehabil Eng. 2024;32:1314–23.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhou H, Yang J, Jia J, Niu L, Sun Z, Shi D, Meng L, Qiu W, Wang X, et al. Low-intensity pulsed ultrasound ameliorates depression‐like behaviors in a rat model of chronic unpredictable stress. CNS Neurosci Ther. 2021;27(2):233–43.

    Article 
    PubMed 

    Google Scholar
     

  • Arulpragasam A, Faucher C, Van Wout-Frank ‘T, Mernoff M, Correia S, Van Patten S, Greenberg R, Philip B. P369. First-in-human use of low intensity focused ultrasound in depressed patients: safety and tolerability outcomes. Biol Psychiatry. 2022;91(9):S236–7.

    Article 

    Google Scholar
     

  • Dos Santos Alves Maria G, Dias NS, Nicolato R, De Paula JJ, Bicalho MAC, Cunha RS, Silva LC, De Miranda DM, De Mattos Viana B, Romano-Silva MA. Safety and efficacy of repetitive stimulation of the left dorsolateral prefrontal cortex using transcranial focused ultrasound in treatment-resistant depressed patients: A non-inferiority randomized controlled trial protocol. Asian J Psychiatry. 2024;95:103994.

    Article 

    Google Scholar
     

  • Reznik SJ, Sanguinetti JL, Tyler WJ, Daft C, Allen JJB. A double-blind pilot study of transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among depressed participants. Neurol Psychiatry Brain Res. 2020;37:60–6.

    Article 

    Google Scholar
     

  • Riis T, Feldman D, Losser A, Mickey B, Kubanek J. Device for multifocal delivery of ultrasound into deep brain regions in humans. IEEE Trans Biomed Eng. 2024;71(2):660–U668. https://ieeexplore.ieee.org/document/10246844.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riis TS, Feldman DA, Vonesh LC, Brown JR, Solzbacher D, Kubanek J, Mickey BJ. Durable effects of deep brain ultrasonic neuromodulation on major depression: A case report. J Med Case Rep. 2023;17(1):449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahdavi KD, Jordan SE, Jordan KG, Rindner ES, Haroon JM, Habelhah B, Becerra SA, Surya JR, Venkatraman V, Zielinski MA. A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. J Psychiatr Res. 2023;168:125–32.

    Article 
    PubMed 

    Google Scholar
     

  • Deveci E, Kilic A, Yilmaz O, Nabi A, Ergun AS, Bozkurt A, Kurtulmus A, Ozturk A, Esrefoglu M, Aydin MS, et al. The effects of focused ultrasound pulsation of nucleus accumbens in opioid-dependent rats. Psychiatry Clin Psychopharmacol. 2019;29(4):748–59.

    Article 

    Google Scholar
     

  • Deveci E, Akbaş F, Ergun AŞ, Kurtulmuş A, Koçak AB, Boyraz RK, Tok OE, Aydın MŞ, Kılıç Ö, Bozkurt A, et al. The effects of transcranial focused ultrasound stimulation of nucleus accumbens on neuronal gene expression and brain tissue in high alcohol-preferring rats. Mol Neurobiol. 2023;60(2):1099–116.

    Article 
    PubMed 

    Google Scholar
     

  • Lin C-W, Cheng M-H, Fan C-H, Chen H-H, Yeh C-K. Focused ultrasound stimulation of infralimbic cortex attenuates reinstatement of methamphetamine-induced conditioned place preference in rats. Neurotherapeutics. 2024;21(3):e00328.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahoney JJ, Thompson-Lake DGY, Ranjan M, Marton JL, Carpenter JS, Zheng W, Berry JH, Farmer DL, D’Haese P, Finomore VS, et al. Low-intensity focused ultrasound targeting the bilateral nucleus accumbens as a potential treatment for substance use disorder: A first-in-human report. Biol Psychiatry. 2023;94(11):e41–3.

    Article 
    PubMed 

    Google Scholar
     

  • Mahoney JJ, Haut MW, Carpenter J, Ranjan M, Thompson-Lake DGY, Marton JL, Zheng W, Berry JH, Tirumalai P, Mears A, et al. Low-intensity focused ultrasound targeting the nucleus accumbens as a potential treatment for substance use disorder: safety and feasibility clinical trial. Front Psychiatry. 2023;14:1211566.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan T-Y, Pan Y-J, Tsai S-J, Tsai C-W, Yang F-Y. Focused ultrasound stimulates the prefrontal cortex and prevents MK-801-induced psychiatric symptoms of schizophrenia in rats. Schizophr Bull. 2024;50(1):120–31.

    Article 
    PubMed 

    Google Scholar
     

  • Tsai C-W, Tsai S-J, Pan Y-J, Lin H-M, Pan T-Y, Yang F-Y. Transcranial ultrasound stimulation reverses behavior changes and the expression of calcium-binding protein in a rodent model of schizophrenia. Neurotherapeutics. 2022;19(2):649–59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai Z, Ren L, Song Z, Xiang Q, Zhuo K, Zhang S, Li X, Zhang Y, Jiao X, Tong S, et al. The efficacy of low-intensity transcranial ultrasound stimulation on negative symptoms in schizophrenia: A double-blind, randomized sham-controlled study. Brain Stimul. 2023;16(3):790–2.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Bai Y, Xiao X, Wang L, Wei G, Guo M, Song X, Tian Y, Ming D, Yang J, et al. Low-intensity focused ultrasound stimulation reverses social avoidance behavior in mice experiencing social defeat stress. Cereb Cortex. 2022;32(24):5580–96.

    Article 
    PubMed 

    Google Scholar
     

  • Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, Li X, Austelle CW, Short EB, Borckardt JJ. Sonication of the anterior thalamus with MRI-Guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: A double-blind, sham-controlled study. Brain Stimul. 2020;13(6):1805–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strohman A, Payne B, In A, Stebbins K, Legon W. Low-Intensity focused ultrasound to the human dorsal anterior cingulate attenuates acute pain perception and autonomic responses. J Neurosci: Off J Soc Neurosci. 2024;44(8).

  • Legon W, Strohman A, In A, Payne B. Noninvasive neuromodulation of subregions of the human Insula differentially affect pain processing and heart-rate variability: A within-subjects pseudo-randomized trial. Pain. 2024;165(7):1625.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hameroff S, Trakas M, Duffield C, Annabi E, Gerace MB, Boyle P, Lucas A, Amos Q, Buadu A, Badal JJ. Transcranial ultrasound (TUS) effects on mental states: A pilot study. Brain Stimul. 2013;6(3):409–415. https://linkinghub.elsevier.com/retrieve/pii/S1935861X12000848.

    Article 
    PubMed 

    Google Scholar
     

  • Shin DH, Son S, Kim EY. Low-Energy transcranial Navigation-Guided focused ultrasound for neuropathic pain: an exploratory study. Brain Sci. 2023;13(10).

  • Zhang T, Wang Z, Liang H, Wu Z, Li J, Ou-Yang J, Yang X, Peng YB, Zhu B. Transcranial focused ultrasound stimulation of periaqueductal Gray for analgesia. IEEE Trans Biomed Eng. 2022;69(10):3155–62.

    Article 
    PubMed 

    Google Scholar
     

  • Wang B, Chen MX, Chen SC, Feng XJ, Liao YH, Zhao YX, Tie JS, Liu Y, Ao LJ. Low-Intensity focused ultrasound alleviates chronic neuropathic Pain-Induced allodynia by inhibiting neuroplasticity in the anterior cingulate cortex. Neural Plast. 2022;2022:6472475.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao L, Chen R, Ji H, Wang X, Zhang X, Yuan Y. Preventive and therapeutic effects of Low-Intensity ultrasound stimulation on migraine in rats. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2332–40.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Z, Meng L, Zou J, Zhou W, Huang X, Xue S, Bian T, Yuan T, Niu L, Guo Y, et al. Non-invasive ultrasonic neuromodulation of neuronal excitability for treatment of epilepsy. Theranostics. 2020;10(12):5514–5526. http://www.thno.org/v5510p5514.htm.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S-G, Tsai C-H, Lin C-J, Lee C-C, Yu H-Y, Hsieh T-H, Liu H-L. Transcranial focused ultrasound pulsation suppresses Pentylenetetrazol induced epilepsy in vivo. Brain Stimul. 2020;13(1):35–46. https://linkinghub.elsevier.com/retrieve/pii/S1935861X19303742.

    Article 
    PubMed 

    Google Scholar
     

  • Choi T, Koo M, Joo J, Kim T, Shon YM, Park J. Bidirectional neuronal control of epileptiform activity by repetitive transcranial focused ultrasound stimulations. Adv Sci. 2024;11(2):2302404. https://onlinelibrary.wiley.com/doi/2302410.2301002/advs.202302404.

    Article 

    Google Scholar
     

  • Brinker ST, Preiswerk F, White PJ, Mariano TY, McDannold NJ, Bubrick EJ. Focused ultrasound platform for investigating therapeutic neuromodulation across the human hippocampus. Ultrasound Med Biol. 2020;46(5):1270–1274. https://linkinghub.elsevier.com/retrieve/pii/S0301562920300090.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern JM, Spivak NM, Becerra SA, Kuhn TP, Korb AS, Kronemyer D, Khanlou N, Reyes SD, Monti MM, Schnakers C. Safety of focused ultrasound neuromodulation in humans with Temporal lobe epilepsy. Brain Stimul. 2021;14(4):1022–31.

    Article 
    PubMed 

    Google Scholar
     

  • Bubrick EJ, McDannold NJ, Orozco J, Mariano TY, Rigolo L, Golby AJ, Tie Y, White PJ. Transcranial ultrasound neuromodulation for epilepsy: A pilot safety trial. Brain Stimul. 2024;17(1):7–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lee CC, Chou CC, Hsiao FJ, Chen YH, Lin CF, Chen CJ, Peng SJ, Liu HL, Yu HY. Pilot study of focused ultrasound for drug-resistant epilepsy. Epilepsia. 2022;63(1):162–175. https://onlinelibrary.wiley.com/doi/110.1111/epi.17105.

    Article 
    PubMed 

    Google Scholar
     

  • Yang F-Y, Huang L-H, Wu M-T, Pan Z-Y: Ultrasound neuromodulation reduces demyelination in a rat model of multiple sclerosis. 2022, 23(17):10034. %* https://creativecommons.org/licenses/by/10034.10030/ %U https://www.mdpi.com/11422-10067/10023/10017/10034.

  • Huang L-H, Pan Z-Y, Pan Y-J, Yang F-Y. Magnetization transfer ratio for assessing remyelination after transcranial ultrasound stimulation in the lysolecithin rat model of multiple sclerosis. Cereb Cortex. 2023;33(4):1403–11. https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model %U https://academic.oup.com/cercor/article/1433/1404/1403/6562787.

    Article 
    PubMed 

    Google Scholar
     

  • Baek H, Pahk KJ, Kim M-J, Youn I, Kim H. Modulation of cerebellar cortical plasticity using low-intensity focused ultrasound for poststroke sensorimotor function recovery. Neurorehabilit Neural Repair. 2018;32(9):777–787. http://journals.sagepub.com/doi/710.1177/1545968318790022.

    Article 

    Google Scholar
     

  • Guo T, Li H, Lv Y, Lu H, Niu J, Sun J, Yang G-Y, Ren C, Tong S. Pulsed transcranial ultrasound stimulation immediately after the ischemic brain injury is neuroprotective. IEEE Trans Biomed Eng. 2015;62(10):2352–7.

    Article 
    PubMed 

    Google Scholar
     

  • Wang Y, Li F, He M-J, Chen S-J. The effects and mechanisms of transcranial ultrasound stimulation combined with cognitive rehabilitation on post-stroke cognitive impairment. Neurol Sci. 2022;43(7):4315–4321. https://link.springer.com/4310.1007/s10072-10022-05906-10072.

  • Monti M, Schnakers C, Korb A, Bystritsky A, Vespa P. Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: A first-in-man report. Brain Stimul. 2016;9(6):940–1.

    Article 
    PubMed 

    Google Scholar
     

  • Cain J, Spivak N, Coetzee J, Crone J, Johnson M, Lutkenhoff E, Real C, Buitrago-Blanco M, Vespa P, Schnakers C. Neural correlates of behavioral recovery following ultrasonic thalamic stimulation in chronic disorders of consciousness. MedRxiv. 2023;2023(2007):2013–23292523.


    Google Scholar
     

  • Cain J, Spivak N, Coetzee J, Crone J, Johnson M, Lutkenhoff E, Real C, Buitrago-Blanco M, Vespa P, Schnakers C, et al. Ultrasonic deep brain neuromodulation in acute disorders of consciousness: A proof-of-concept. Brain Sci. 2022;12(4):428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu Y-H, Liu R-S, Lin W-L, Yuh Y-S, Lin S-P, Wong T-T. Transcranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for mucopolysaccharidosis type I disease. Orphanet J Rare Dis. 2017;12(1):109%U http://ojrd.biomedcentral.com/articles/110.1186/s13023-13017-10649-13026

  • Tsai S-J. Therapeutic potential of transcranial focused ultrasound for Rett syndrome. Med Sci Monit. 2016;22:4026–4029. http://www.medscimonit.com/abstract/index/idArt/898041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Wang T, Ji H, Yan J, Wang X, Zhang X, Li X, Yuan Y. Modulation effect of non-invasive transcranial ultrasound stimulation in an ADHD rat model. J Neural Eng. 2023;20(1).

  • Schafer ME, Spivak NM, Korb AS, Bystritsky A. Design, development, and operation of a low-intensity focused ultrasound pulsation (LIFUP) system for clinical use. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(1):54–64. https://creativecommons.org/licenses/by/54.50/legalcode %U https://ieeexplore.ieee.org/document/9131840/.

    Article 
    PubMed 

    Google Scholar
     

  • Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a clean mouse model of ultrasonic neuromodulation. iScience. 2023;26(12):108372. https://linkinghub.elsevier.com/retrieve/pii/S2589004223024495.

    Article 

    Google Scholar
     

  • Sato T, Shapiro MG, Tsao DY. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron. 2018;98(5):1031.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo H, Hamilton M, Offutt SJ, Gloeckner CD, Li T, Kim Y, Legon W, Alford JK, Lim HH. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron. 2018;98(5):1020–1030.e1024. https://www.cell.com/neuron/abstract/S0896-6273(1018)30371-30374

  • Johnstone A, Nandi T, Martin E, Bestmann S, Stagg C, Treeby B. A range of pulses commonly used for human transcranial ultrasound stimulation are clearly audible. Rain Stimul: Basic, Transl Clin Res Neuromodulation. 2021;14(5):1353–1355. https://www.brainstimjrnl.com/article/S1935-1861X(1321)00217-00215/fulltext.

  • Kop BR, de Jong L, Pauly KB, den Ouden HE, Verhagen L. Parameter optimisation for mitigating somatosensory confounds during transcranial ultrasonic stimulation. bioRxiv 2025:2025.2003. 2019.642045.

  • Braun V, Blackmore J, Cleveland RO, Butler CR. Transcranial ultrasound stimulation in humans is associated with an auditory confound that can be effectively masked. Brain Stimul: Basic, Transl, Clin Res Neuromodulation. 2020;13(6):1527–1534. https://www.brainstimjrnl.com/article/S1935-1861X(1520)30232-30231/fulltext.

  • Sarica C, Nankoo J-F, Fomenko A, Grippe TC, Yamamoto K, Samuel N, Milano V, Vetkas A, Darmani G, Cizmeci MN, et al. Human studies of transcranial ultrasound neuromodulation: A systematic review of effectiveness and safety. Brain Stimul. 2022;15(3):737–46.

    Article 
    PubMed 

    Google Scholar
     

  • Kosnoff J, Yu K, Liu C, He B. Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention. Nat Commun. 2024;15(1):4382. https://www.nature.com/articles/s41467-41024-48576-41468.

    Article 

    Google Scholar
     

  • He J, Zhu Y, Wu C, Wu J, Chen Y, Yuan M, Cheng Z, Zeng L, Ji X. Transcranial ultrasound neuromodulation facilitates isoflurane-induced general anesthesia recovery and improves cognition in mice. Ultrasonics. 2023;135:107132.

    Article 
    PubMed 

    Google Scholar
     

  • Yoo S-S, Kim H, Min B-K, Franck E, Park S. Transcranial focused ultrasound to the thalamus alters anesthesia time in rats. NeuroReport. 2011;22(15):783–787. https://journals.lww.com/00001756-201110260-201100012.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Ianni T, Morrison KP, Yu B, Murphy KR, De Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul. 2023;16(6):1743–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul. 2024;17(4):734–51.

    Article 
    PubMed 

    Google Scholar