• Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369, 842–867 (2011).

    Article 

    Google Scholar
     

  • Niazi, H. et al. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 7, 413–422 (2024).

    Article 

    Google Scholar
     

  • Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

    Article 

    Google Scholar
     

  • Han, D., Post, V. E. A. & Song, X. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J. Hydrol. 531, 1067–1080 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Barlow, P. M. & Leake, S. A. Streamflow Depletion by Wells–Understanding and Managing the Effects of Groundwater Pumping on Streamflow (USGS, 2012); https://pubs.usgs.gov/circ/1376/pdf/circ1376_barlow_report_508.pdf

  • Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article 

    Google Scholar
     

  • Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article 

    Google Scholar
     

  • Hoekstra, A. Y. in Assessing and Measuring Environmental Impact and Sustainability (ed. Klemeš, J. J.) 221–254 (Butterworth-Heinemann, 2015).

  • Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

    Article 

    Google Scholar
     

  • Greenwood, E. E. et al. Mapping safe drinking water use in low- and middle-income countries. Science 385, 784–790 (2024).

    Article 
    CAS 

    Google Scholar
     

  • China Industry Statistical Yearbook (China Statistics, 2022).

  • Hou, S. et al. Tracking grid-level freshwater boundary exceedance along global supply chains from consumption to impact. Nat. Water 3, 439–448 (2025).

    Article 

    Google Scholar
     

  • World Water Development Report 2024 (UNESCO, 2024); https://unesdoc.unesco.org/ark:/48223/pf0000388948

  • The United Nations World Water Development Report 2014 (UN-Water, 2014).

  • Arora, N. K. & Mishra, I. Sustainable development goal 6: global water security. Environ. Sustain. 5, 271–275 (2022).

    Article 

    Google Scholar
     

  • Grafton, R. Q. et al. Rethinking responses to the world’s water crises. Nat. Sustain. 8, 11–21 (2025).

    Article 

    Google Scholar
     

  • Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

  • Yang, H. & Zehnder, A. “Virtual water”: an unfolding concept in integrated water resources management. Water Resour. Res. 43, W12301 (2007).

  • Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. et al. Trends and environmental impacts of virtual water trade. Nat. Rev. Earth Environ. 5, 890–905 (2024).

    Article 

    Google Scholar
     

  • Global Resources Outlook 2024: Bend the Trend—Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

  • Tzachor, A., Wang, H. & Richards, C. E. Addressing the excessive water consumption of materials manufacturing. Nat. Water 2, 4–7 (2024).

    Article 

    Google Scholar
     

  • Gerbens-Leenes, P. W., Hoekstra, A. Y. & Bosman, R. The blue and grey water footprint of construction materials: steel, cement and glass. Water Resour. Ind. 19, 1–12 (2018).

    Article 

    Google Scholar
     

  • Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input–output analysis. Glob. Environ. Change 38, 171–182 (2016).

    Article 

    Google Scholar
     

  • Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Environmental footprint of aluminum production in China. J. Clean. Prod. 133, 1242–1251 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).

    Article 

    Google Scholar
     

  • Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).

    Article 

    Google Scholar
     

  • Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, M. et al. Provincial and sector-level material footprints in China. Proc. Natl Acad. Sci. USA 116, 26484–26490 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

    Article 

    Google Scholar
     

  • Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, H. S. & Small, M. J. Extending the boundaries of life-cycle assessment through environmental economic input–output models. J. Ind. Ecol. 4, 7–10 (2008).

    Article 

    Google Scholar
     

  • Mattila, T. J., Pakarinen, S. & Sokka, L. Quantifying the total environmental impacts of an industrial symbiosis—a comparison of process-, hybrid and input−output life cycle assessment. Environ. Sci. Technol. 44, 4309–4314 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

    Article 

    Google Scholar
     

  • World Steel in Figures (World Steel Association, 2024); https://worldsteel.org/data/world-steel-in-figures/

  • Total Production of Paper and Paperboard in the United States from 1961 to 2023. Statista https://www.statista.com/statistics/252708/total-us-production-of-paper-and-board-2001-2010/ (2024).

  • UN-Water SDG 6 Data Portal. UN https://sdg6data.org/index.php/en (2024).

  • Lu, Y., Schandl, H., Wang, H. & Zhu, J. China’s pathway towards a net zero and circular economy: a model-based scenario analysis. Resour. Conserv. Recycl. 204, 107514 (2024).

    Article 

    Google Scholar
     

  • Pauliuk, S., Carrer, F., Heeren, N. & Hertwich, E. G. Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector. J. Ind. Ecol. 28, 1699–1715 (2024).

    Article 

    Google Scholar
     

  • Ozcelik, N., Rodríguez, M., Sartal, A. & Lutter, S. Taking away the economic “water productivity” illusion: an indicator inapt to inform meaningful water policies. Ecol. Indic. 165, 112220 (2024).

    Article 

    Google Scholar
     

  • Hasanbeigi, A. & Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 95, 30–44 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J.-L., Wang, S.-C. & Yeh, F.-Y. Total-factor water efficiency of regions in China. Resour. Policy 31, 217–230 (2006).

    Article 

    Google Scholar
     

  • SEEA-Water-System of Environmental-Economic Accounting for Water (UN, 2012).

  • Manual for Physical Water Flow Accounts (Version 2014) (Eurostat, 2014); https://ec.europa.eu/eurostat/documents/1798247/6664269/Manual+for+Physical+Water+Flow+Accounts+%28draft+version+18+Nov+2014%29.pdf

  • Motoshita, M. et al. Responsibility for sustainable water consumption in the global supply chains. Resour. Conserv. Recycl. 196, 107055 (2023).

    Article 

    Google Scholar
     

  • Results of the 2024 Global Assessment of Environmental-Economic Accounting and Supporting Statistics (UN, 2024); https://unstats.un.org/UNSDWebsite/statcom/session_56/documents/BG-3j-UNSC_2025_Results_2024_Global_Assessment-E.pdf

  • Wang, X. et al. Water-energy-carbon nexus assessment of China’s iron and steel industry: case study from plant level. J. Clean. Prod. 253, 119910 (2020).

    Article 

    Google Scholar
     

  • Zuiderveen, E. A. R. et al. The potential of emerging bio-based products to reduce environmental impacts. Nat. Commun. 14, 8521 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Oyejobi, D. O., Firoozi, A. A., Fernández, D. B. & Avudaiappan, S. Integrating circular economy principles into concrete technology: enhancing sustainability through industrial waste utilization. Results Eng 24, 102846 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lutter, S., Sevenster M., Piñero P. & Giljum S. National Hotspots Analysis to Support Science-based National Policy Frameworks for Sustainable Consumption and Production. Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCP- HAT) Version 3.0. (UN, 2024); https://scp-hat.org/wp-content/uploads/2024/05/SCP-HAT-3.0_Technical-documentation_May2024.pdf

  • Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duarte, R., Sánchez-Chóliz, J. & Bielsa, J. Water use in the Spanish economy: an input–output approach. Ecol. Econ. 43, 71–85 (2002).

    Article 

    Google Scholar
     

  • Hertwich, E. G., Koslowski, M. & Rasul, K. Linking hypothetical extraction, the accumulation of production factors, and the addition of value. J. Ind. Ecol. 28, 736–750 (2024).

    Article 

    Google Scholar
     

  • Zhao, C. & Chen, B. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environ. Sci. Technol. 48, 12723–12731 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).

    Article 

    Google Scholar
     

  • Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).

    Article 

    Google Scholar
     

  • Schulte, S., Jakobs, A. & Pauliuk, S. Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis. Earth Syst. Sci. Data 16, 2669–2700 (2024).

    Article 

    Google Scholar
     

  • Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 2008); https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-07-013

  • Pfister, S., Bayer, P., Koehler, A. & Hellweg, S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).

    Article 

    Google Scholar
     

  • Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change 23, 144–156 (2013).

    Article 

    Google Scholar
     

  • World Development Indicators. World Bank https://databank.worldbank.org/source/world-development-indicators (2024).

  • Sachs, J. D., Lafortune, G., Fuller, G. & Drumm, E. Sustainable Development Report 2023: Implementing the SDG Stimulus (Dublin Univ. Press, 2023).

  • World Bank country classifications by income level. World Bank https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025 (2024).