• Mummenhoff K, Kuhnt E, Koch M, Zunk K. Systematic implications of Chloroplast DNA variation in lepidium sections Cardamon, Lepiocardamon and Lepia (Brassicaceae). Plant Syst Evol. 1995;196:75–88.

    CAS 

    Google Scholar
     

  • Zhou TY, Lu LL, Yang G, Al-Shehbaz IA. Lepidium L. In: Wu ZY, Raven PH, editors. Flora of China. Volume 8. Beijing: Science; St. Louis: Missouri Botanical Garden Press; 2001. 31–7.

  • Ilyinska AP. Lepidium s. str. (Brassicaceae) in the flora of Ukraine. Biodivers Res Conserv. 2014;35:25–9.


    Google Scholar
     

  • Al-Shehbaz IA, Mummenhoff K, Appel O. Cardaria, Coronopus, and Stroganowia are united with Lepidium (Brassicaceae). Novon. 2002;12(1):5–11.

  • German DA, Chen WL. Notes on the family Brassicaceae in China. J Syst Evol. 2009;47(3):202–19.


    Google Scholar
     

  • Zhou TY. Lepidium. In: Zhou TY, editor. Flora reipublicae popularis sinicae. Volume 33. Beijing: Science; 1987. pp. 46–57.


    Google Scholar
     

  • Linnaeus C. Species plantarum. Stockholm: Laurentii Salvii; Oxford University; 1753.


    Google Scholar
     

  • Lichvar RW. Phylogenetic relationships within the Western united States species of Lepidium L. University of Alaska Fairbanks; 2020.

  • Thellung A. Die Gattung Lepidium (L.) R. Br. Eine monographische Studie. Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss.1906;41(1):1-304.

  • Jonsell B. Lepidium L. (Cruciferae) in tropical Africa. Bot Notiser. 1975;128:20–46.


    Google Scholar
     

  • Al-Shehbaz IA, Mummenhoff K. Stubendorffia and Winklera belong to the expanded Lepidium (Brassicaceae). Edinb J Bot. 2011;2011;68(2):165–71.


    Google Scholar
     

  • Mummenhoff K. Should Cardaria draba (L.) Desv. be classified within the genus Lepidium L. (Brassicaceae)? Evidence from subunit polypeptide composition of RUBISCO. Feddes Repert. 1995;106(1–5):25–8.


    Google Scholar
     

  • Zheng J, Sun Z, Li F. Micromorphological characters of seed coats of Lepidium from China. Bull Bot Res. 2006;26(3):291–6.


    Google Scholar
     

  • Zhang J, Zhao X, Wang Q. Research advances of Lepidium plants. J Anhui Agri Sci. 2016;44(36):159–6094. (in Chinese).

    CAS 

    Google Scholar
     

  • Chinese Pharmacopeia Commission. Pharmacopoeia of the people’s Republic of China part I. Beijing: China Medical Science; 2015.


    Google Scholar
     

  • Fan QL, Zhu YD, Huang WH, Qi Y, Guo BL. Two new acylated flavonol glycosides from the seeds of Lepidium sativum. Molecules. 2014;19(8):11341–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Wang X, Jiang S, Wang W, Wu X, Wu N, et al. Chemical constituents of Lepidium latifolium. Chem Nat Compd. 2021;57:767–9.

    CAS 

    Google Scholar
     

  • Raven JA, Allen JF. Genomics and chloroplast evolution: what did cyanobacteria do for plants? Genome Biol. 2003;4(3):209.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravi V, Khurana JP, Tyagi AK, Khurana P. An update on Chloroplast genomes. Plant Syst Evol. 2007;271(1–2):101–22.


    Google Scholar
     

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK. Extreme reconfiguration of plastid genomes in the angiosperm family geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol. 2011;28(1):583–600.

    CAS 
    PubMed 

    Google Scholar
     

  • Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76:273–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao K, Li L, Quan H, Yang J, Zhang Z, Liao Z, et al. Comparative analyses of chloroplast genomes from 14 Zanthoxylum species: identification of variable DNA markers and phylogenetic relationships within the genus. Front Plant Sci. 2021;11:2226.


    Google Scholar
     

  • Li HT, Yi TS, Gao LM, Ma PF, Zhang T, Yang JB, et al. Origin of angiosperms and the puzzle of the jurassic gap. Nat Plants. 2019;5(5):461–70.

    PubMed 

    Google Scholar
     

  • Guo X, Xie P, Zhang G, Wang T, Li J, Zhang X, et al. Complete plastomes serve as desirable molecular makers for precise identification of Asparagus cochinchinensis (Asparagaceae) and nine other congeneric species frequently utilized as its adulterants. BMC Plant Biol. 2025;25(1):366.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao G, Zhang Y-Q, Barrett C, Xue B, Bellot S, Baker WJ, et al. A plastid phylogenomic framework for the palm family (Arecaceae). BMC Biol. 2023;21(1):50.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu H, Hu QJ, Al-Shehbaz I, Luo X, Zeng TT, Guo XY, et al. Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole chloroplast genomes. Front Plant Sci. 2016;7:1826.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X, Liu J, Hao G, Zhang L, Mao K, Wang X, et al. Plastome phylogeny and early diversification of brassicaceae. BMC Genomics. 2017;18(1):176.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osuna-Mascaró C, Rubio de Casas R, Landis JB, Perfectti F, Genomic resources for, editors. spp. (Brassicaceae): Transcriptome and chloroplast genomes. Front Ecol Evol. 2021;9:620601.

  • Brock JR, Mandáková T, McKain M, Lysak MA, Olsen KM. Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C. sativa. Hortic Res. 2022;9:uhab050.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren T, Xun L, Jia Y, Li B. Complete plastomes of ten Rorippa species (Brassicaceae): comparative analysis and phylogenetic relationships. Agronomy. 2024;14(5):913.

    CAS 

    Google Scholar
     

  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bull. 1987;19:11–5.


    Google Scholar
     

  • Chen SF, Zhou YQ, Chen YR, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884-90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin JJ, Yu WB, Yang JB, Song Y, dePamphilis CW, Yi TS, et al. Getorganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020;21:241.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6-11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greiner S, Lehwark P, Bock R. Organellargenomedraw (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47(W1):W59-64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–202.

    PubMed 

    Google Scholar
     

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. Reputer: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–42.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32(suppl2):W273-9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh K, Standley DM. Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19(6):908–17.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang D, Gao F, Jakovlic I, Zou H, Zhang J, Li WX, et al. Phylosuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour. 2020;20(1):348–55.

    PubMed 

    Google Scholar
     

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posada D, Crandall KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, van Hooft A, Nikolov LA, et al. Global brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol. 2023;33:4052–68.

    CAS 
    PubMed 

    Google Scholar
     

  • Yao G, Jin J-J, Li H-T, Yang J-B, Mandala VS, Croley M, et al. Plastid phylogenomic insights into the evolution of caryophyllales. Mol Phylogenet Evol. 2019;134:74–86.

    PubMed 

    Google Scholar
     

  • Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene loss and evolution of the plastome. Genes. 2020;11(10):1133.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy S, Ueda M, Kadowaki KI, Tsutsumi N. Different status of the gene for ribosomal protein S16 in the Chloroplast genome during evolution of the genus Arabidopsis and closely related species. Genes Genet Syst. 2010;85:319–26.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu LX, Li R, Worth JRP, Li X, Li P, Cameron KM, et al. The complete chloroplast genome of Chinese bayberry (Morella rubra, Myricaceae): implications for understanding the evolution of Fagales. Front Plant Sci. 2017;8:968.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren T, Yang Y, Zhou T, Liu ZL. Comparative plastid genomes of Primula species: sequence divergence and phylogenetic relationships. Int J Mol Sci. 2018;19:1050.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raman G, Park S. Structural characterization and comparative analyses of the Chloroplast genome of Eastern Asian species Cardamine occulta (Asian C. flexuosa With.) and other Cardamine species. Front Biosci. 2022;27:124.

    CAS 

    Google Scholar
     

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, et al. Many parallel losses of infa from Chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell. 2001;13(3):645–58.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li EZ, Liu KJ, Deng RY, Gao YW, Liu XY, Dong WP, et al. Insights into the phylogeny and chloroplast genome evolution of Eriocaulon (Eriocaulaceae). BMC Plant Biol. 2023;23:32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren T, Li ZX, Xie DF, Gui LJ, Peng C, Wen J, et al. Plastomes of eight Ligusticum species: characterization, genome evolution, and phylogenetic relationships. BMC Plant Biol. 2020;20(1):519.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, Chaw SM. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol Biol. 2008;8:36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu A, Guo W, Gupta S, Fan W, Mower JP. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 2016;209(4):1747–56.

    CAS 
    PubMed 

    Google Scholar
     

  • Raman G, Park V, Kwak M, Lee B, Park SJ. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species. PLoS ONE. 2017;12:1–18.


    Google Scholar
     

  • Pfitzinger H, Guillemaut P, Weil JH, Pillay DT. Adjustment of the tRNA population to the codon usage in chloroplasts. Nucleic Acids Res. 1987;15(4):1377–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morton BR. Selection on the codon bias of Chloroplast and Cyanelle genes in different plant and algal lineages. J Mol Evol. 1998;46:449–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Tian S, Lu P, Zhang Z, Wu JQ, Zhang H, Shen H. Chloroplast genome sequence of Chongming Lima bean (Phaseolus lunatus L.) and comparative analyses with other legume chloroplast genomes. BMC Genomics. 2021;22(1):194.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu B, Qian F, Hou Y, Yang W, Cai M, Wu X. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae). PLoS ONE. 2021;16(3):e248556.


    Google Scholar
     

  • Javaid N, Ramzan M, Khan IA, Alahmadi TA, Datta R, Fahad S, et al. The chloroplast genome of Farsetia hamiltonii Royle, phylogenetic analysis, and comparative study with other members of clade c of brassicaceae. BMC Plant Biol. 2022;22(1):384.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogihara Y, Terachi T, Sasakuma T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci U S A. 1988;85:8573–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weng ML, Blazier JC, Govindu M, Jansen RK. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol. 2014;31(3):645–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah MF, Shahzadi I, Ali Z, Islam M, Naeem M, et al. Correlations among oligonucleotide repeats, nucleotide substitutions, and insertion-deletion mutations in Chloroplast genomes of plant family malvaceae. J Syst Evol. 2020;59(2):388–402.


    Google Scholar
     

  • Yan C, Du J, Gao L, Li Y, Hou X. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): genome organization, adaptive evolution and phylogenetic relationships in cardamineae. Gene. 2019;699:24–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Ta M, Shan X, Pan Y, Sun C, Song L, et al. Characterization of the complete Chloroplast genome of Brassica Oleracea var. Italica and phylogenetic relationships in brassicaceae. PLoS ONE. 2022;17:1–18.


    Google Scholar
     

  • Qian S, Zhang Y, Lee SY. Comparative analysis of complete chloroplast genome sequences in Edgeworthia (Thymelaeaceae) and new insights into phylogenetic relationships. Front Genet. 2021;12:643552.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong R, Gui C, Zhang Y, Su N, Hou X, Liu M, et al. Phylogenomics, plastome structure and species identification in Mahonia (Berberidaceae). BMC Genomics. 2022;23:766.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • He S, Wang Y, Volis S, Li D, Yi T. Genetic diversity and population structure: implications for conservation of wild soybean (Glycine soja Sieb. et zucc) based on nuclear and chloroplast microsatellite variation. Int J Mol Sci. 2012;13:12608–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue JH, Wang S, Zhou SL. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am J Bot. 2012;99(6):e240-4.

    PubMed 

    Google Scholar
     

  • Ren T, Peng FF, Wei YF, Luo SX, Liu ZL. Characterization of the complete plastid genome of Draba oreades (Brassicaceae). Mitochondr DNA B Resources. 2019;4(1):439–40.


    Google Scholar
     

  • Yang Z, Zhao T, Ma Q, Liang L, Wang G. Comparative genomics and phylogenetic analysis revealed the chloroplast genome variation and interspecific relationships of Corylus (Betulaceae) species. Front Plant Sci. 2018;9:927.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, et al. Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan plateau. BMC Plant Biol. 2022;22(1):195.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong S, Ying Z, Yu S, Wang Q, Liao G, Ge Y, et al. Complete chloroplast genome of Stephania Tetrandra (Menispermaceae) from Zhejiang province: insights into molecular structures, comparative genome analysis, mutational hotspots and phylogenetic relationships. BMC Genomics. 2021;22(1):880.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song BN, Liu CK, Zhao AQ, Tian RM, Xie DF, Xiao YL, et al. Phylogeny and diversification of genus Sanicula L. (Apiaceae): novel insights from plastid phylogenomic analyses. BMC Plant Biol. 2024;24:70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Group CPW, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, et al. A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106:12794–7.


    Google Scholar
     

  • Xie Z, Merchant S. The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem. 1996;271(9):4632–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Dong W, Li W, Lu Y, Xie X, Jin X, et al. Comparative analysis of six Lagerstroemia complete Chloroplast genomes. Front Plant Sci. 2017;8(15):15.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li JL, Tang JM, Zeng SY, Han F, Yuan J, Yu J. Comparative plastid genomics of four Pilea (Urticaceae) species: insight into interspecific plastid genome diversity in Pilea. BMC Plant Biol. 2021;21:25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hollingsworth PM. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A. 2011;108(49):19451–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, et al. Ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 2015;5:1–5.

    CAS 

    Google Scholar
     

  • Li W, Zhang C, Guo X, Liu Q, Wang K. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis. PLoS ONE. 2019;14(5):e0216645.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, et al. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic Res. 2019;6:89.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park KT, Park S. Phylogenomic analyses of Hepatica species and comparative analyses within tribe anemoneae (ranunculaceae). Front Plant Sci. 2021;12:638580.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li DM, Li J, Wang DR, Xu YC, Zhu GF. Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae). BMC Plant Biol. 2021;21(1):558.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Deng T, Moore MJ, Ji Y, Lin N, Zhang H, et al. Plastome phylogenomics of saussurea (Asteraceae: Cardueae). BMC Plant Biol. 2019;19:290.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, et al. Uncovering the protein translocon at the Chloroplast inner envelope membrane. Science. 2013;339(6119):571–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Schneider AC, Braukmann T, Banerjee A, Stefanović S. Convergent plastome evolution and gene loss in holoparasitic Lennoaceae. Genome Biol Evol. 2018;10(10):2663–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zavala-Páez M, Vieira LDN, de Baura VA, Balsanelli E, de Souza EM, Cevallos MC, et al. Comparative plastid genomics of Neotropical Bulbophyllum (Orchidaceae; Epidendroideae). Front Plant Sci. 2020;11:799.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang XY, Wang ZF, Luo WC, Guo XY, Zhang CH, Liu JQ, et al. Plastomes of betulaceae and phylogenetic implications. J Syst Evol. 2019;57(5):508–18.


    Google Scholar
     

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee J-Y, Franzke A. Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot. 2004;91:254–61.

    CAS 
    PubMed 

    Google Scholar
     

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee J-Y, Franzke A. African species of Lepidium (Brassicaceae) contributed via hybridization to the origin of Australian/NewZealand species. In: S.A. Ghazanfar & H.J. Beentje, editors, Taxonomy and ecology of African plants, their conservation and sustainable use. Royal Botanic Gardens, Kew. 2006;291–308.