• MacLeod, M. et al. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Omura, T. et al. Microbial decomposition of biodegradable plastics on the deep-sea floor. Nat. Commun. 15, 568 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bergmann, M. et al. Plastic pollution in the Arctic. Nat. Rev. Earth Environ. 3, 323–337 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chamas, A. et al. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng. 8.9, 3494–3511 (2020).

    Article 

    Google Scholar
     

  • Corinaldesi, C. et al. Multiple impacts of microplastics can threaten marine habitat-forming species. Commun. Biol. 4, 431 (2021).

    Article 

    Google Scholar
     

  • Law, K. L. Plastics in the marine environment. Annu. Rev. Mar. Sci. 9, 205–229 (2017).

    Article 

    Google Scholar
     

  • United Nations. Transforming our world: the 2030 Agenda for Sustainable Development. https://sdgs.un.org/2030agenda (2015).

  • Beaumont, N. J. et al. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 142, 189–195 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rodrigues, M. O. et al. Impacts of plastic products used in daily life on the environment and human health: What is known?. Environ. Toxicol. Pharmacol. 72, 103239 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cucina, M. The lesser of two evils: Enhancing biodegradable bioplastics use to fight plastic pollution requires policy makers interventions in Europe. Environ. Impact Assess. Rev. 103, 107230 (2023).

    Article 

    Google Scholar
     

  • European Commission. A European strategy for plastics in a circular economy. COM/2018/028. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52018DC0028 (2018).

  • Directive (EU) 2019/904 of the European Parliament and of the Council on the reduction of the impact of certain plastic products on the environment. https://eur-lex.europa.eu/eli/dir/2019/904/oj/eng (2019).

  • Borg, K. et al. Curbing plastic consumption: A review of single-use plastic behaviour change interventions. J. Clean. Prod. 344, 131077 (2022).

    Article 

    Google Scholar
     

  • Schnurr, R. E. J. et al. Reducing marine pollution from single-use plastics (SUPs): A review. Mar. Pollut. Bull. 137, 157–171 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4.7, 627–635 (2021).

    Article 

    Google Scholar
     

  • Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).

    Article 

    Google Scholar
     

  • Mordor Intelligence. Nanotechnology Drug Delivery Market – Share Analysis, Growth Trends & Forecasts (2024–2029). https://www.mordorintelligence.com/industry-reports/global-uht-milkmarket (2023).

  • Expert Market Research. Global Polylactic Acid (PLA) Market Size Analysis Report – Market Share, Forecast Trends and Outlook (2024–2032). https://www.expertmarketresearch.com/reports/polylactic-acid-pla-market/toc (2023).

  • Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J. & Le, T. A. T. Environmental impact of bioplastic use: A review. Heliyon 7, e07918 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Miksch, L., Köck, M., Gutow, L. & Saborowski, R. Bioplastics in the sea: Rapid in-vitro evaluation of degradability and persistence at natural temperatures. Front. Mar. Sci. 9, 920293 (2022).

    Article 

    Google Scholar
     

  • de Vogel, F. A. et al. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. Sci. Total Environ. 928, 172288 (2024).

    Article 

    Google Scholar
     

  • Chen, Z., Wei, W., Liu, X. & Ni, B. J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in urban waters. Water Res. 221, 118846 (2022).

    Article 
    CAS 

    Google Scholar
     

  • European Bioplastics. Market data. https://www.european-bioplastics.org/market/# (accessed July 2025).

  • Mehmood, A., Raina, N., Phakeenuya, V., Wonganu, B. & Cheenkachorn, K. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development. Mater. Today Proc. 72, 3049–3055 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Swetha, T. A. et al. A review on biodegradable polylactic acid (PLA) production from fermentative food waste—Its applications and degradation. Int. J. Biol. Macromol. 234, 123703 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qi, X., Bo, Y., Ren, Y. & Wang, X. The anaerobic biodegradation of poly(lactic) acid textiles in photosynthetic microbial fuel cells: self-sustained bioelectricity generation. Polym. Degrad. Stab. 148, 42–49 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Venâncio, C., Lopes, I. & Oliveira, M. Bioplastics: known effects and potential consequences to marine and estuarine ecosystem services. Chemosphere 309, 136810 (2022).

    Article 

    Google Scholar
     

  • Nandakumar, A., Chuah, J. A. & Sudesh, K. Bioplastics: A boon or bane?. Renew. Sustain. Energy Rev. 147, 111237 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, G. & Shenkar, N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 268, 115364 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tamayo-Belda, M. et al. Effects of petroleum-based and biopolymer-based nanoplastics on aquatic organisms: a case study with mechanically degraded pristine polymers. Sci. Total Environ. 883, 163447 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Z. et al. Bio-based microplastic polylactic acid exerts the similar toxic effects to traditional petroleum-based microplastic polystyrene in mussels. Sci. Total Environ. 946, 174386 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Beltrán-Sanahuja, A., Casado-Coy, N., Simó-Cabrera, L. & Sanz-Lázaro, C. Monitoring polymer degradation under different conditions in the marine environment. Environ. Pollut. 259, 113836 (2020).

    Article 

    Google Scholar
     

  • Shin, M. et al. Biodegradation behavior of polyesters with various internal chemical structures and external environmental factors in real seawater. Polym. Test. 132, 108357 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nazareth, M., Marques, M. R., Leite, M. C. & Castro, ÍB. Commercial plastics claiming biodegradable status: is this also accurate for marine environments?. J. Hazard. Mater. 366, 714–722 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Odobel, C. et al. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front. Microbiol. 12, 734782 (2021).

    Article 

    Google Scholar
     

  • Bagheri, A. R., Laforsch, C., Greiner, A. & Agarwal, S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob. Chall. 1, 1700048 (2017).

    Article 

    Google Scholar
     

  • Gerritse, J., Leslie, H. A., de Tender, C. A., Devriese, L. I. & Vethaak, A. D. Fragmentation of plastic objects in a laboratory seawater microcosm. Sci. Rep. 10, 10945 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Eronen-Rasimus, E. L., Nakki, P. P. & Kaartokallio, H. P. Degradation rates and bacterial community compositions vary among commonly used bioplastic materials in a brackish marine environment. Environ. Sci. Technol. 56, 15760–15769 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cheung, C. K. H. & Not, C. Degradation efficiency of biodegradable plastics in subtropical open-air and marine environments: Implications for plastic pollution. Sci. Total Environ. 938, 173397 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, N. H. et al. Attached and planktonic bacterial communities on bio-based plastic granules and micro-debris in seawater and freshwater. Sci. Total Environ. 785, 147413 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lyu, L. et al. The degradation of polylactic acid face mask components in different environments. J. Environ. Manag. 370, 122731 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. Z. et al. Degradation kinetics and performances of poly(lactic acid) films in artificial seawater. Chem. Pap. 76, 5929–5941 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nie, Z. et al. Effects of polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) biodegradable microplastics on the abundance and diversity of denitrifying and anammox bacteria in freshwater sediment. Environ. Pollut. 315, 120343 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Deroiné, M. et al. Accelerated ageing of polylactide in aqueous environments: Comparative study between distilled water and seawater. Polym. Degrad. Stab. 108, 319–329 (2014).

    Article 

    Google Scholar
     

  • Seeley, M. E. et al. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 11, 2372 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sanz-Lázaro, C., Casado-Coy, N. & Beltrán-Sanahuja, A. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci. Total Environ. 756, 143978 (2021).

    Article 

    Google Scholar
     

  • Pinnell, L. J. & Turner, J. W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol. 10, 1252 (2019).

    Article 

    Google Scholar
     

  • Dussud, C. et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol. 9, 1571 (2018).

    Article 

    Google Scholar
     

  • Suzuki, M. et al. A novel poly(3-hydroxybutyrate)-degrading actinobacterium that was isolated from plastisphere formed on marine plastic debris. Polym. Degrad. Stab. 183, 109461 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kuroda, K. et al. Metagenomic and metatranscriptomic analyses reveal uncharted microbial constituents responsible for polyhydroxybutyrate biodegradation in coastal waters. J. Hazard. Mater. 487, 137202 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Delacuvellerie, A. et al. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater. 419, 126526 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Danovaro, R. et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci. Adv. 2, e1600492 (2016).

    Article 

    Google Scholar
     

  • Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes. ISME J. 6, 1250–1259 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Krasowska, K. & Heimowska, A. Degradability of polylactide in natural aqueous environments. Water 15, 198 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rodrigues, C. A., Tofanello, A., Nantes, I. L. & Rosa, D. S. Biological oxidative mechanisms for degradation of poly(lactic acid) blended with thermoplastic starch. ACS Sustain. Chem. Eng. 3, 2756–2766 (2015).

    CAS 

    Google Scholar
     

  • Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).

    Article 

    Google Scholar
     

  • Manea, E. et al. Viral infections boost prokaryotic biomass production and organic C cycling in hadal trench sediments. Front. Microbiol. 10, 1952 (2019).

    Article 

    Google Scholar
     

  • Urbanek, A. K., Rymowicz, W. & Mirończuk, A. M. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102, 7669–7678 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bubpachat, T., Sombatsompop, N. & Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stab. 152, 75–85 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Romera-Castillo, C., Mallenco-Fornies, R., Saá-Yánez, M. & Álvarez-Salgado, X. A. Leaching and bioavailability of dissolved organic matter from petrol-based and biodegradable plastics. Mar. Environ. Res. 176, 105607 (2022).

    Article 

    Google Scholar
     

  • Birnstiel, S., Sebastián, M. & Romera-Castillo, C. Structure and activity of marine bacterial communities responding to plastic leachates. Sci. Total Environ. 834, 155264 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).

    Article 

    Google Scholar
     

  • Tong, D. et al. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. ISME J. 17, 1247–1256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Suttle, C. A. Marine viruses-major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Tejedor, E. et al. Recent heatwaves as a prelude to climate extremes in the western Mediterranean region. npj Clim. Atmos. Sci. 7, 218 (2024).

    Article 

    Google Scholar
     

  • Corinaldesi, C. et al. Changes in coral forest microbiomes predict the impact of marine heatwaves on habitat-forming species down to mesophotic depths. Sci. Total Environ. 823, 153701 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bird, L. J. et al. Marinobacter: A case study in bioelectrochemical chassis evaluation. Microb. Biotechnol. 16.3, 494–506 (2023).

    Article 

    Google Scholar
     

  • Zhao, S. et al. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ. Microbiol. 25, 2719–2731 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Handley, K. M. & Lloyd, J. R. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front. Microbiol. 4, 136 (2013).

    Article 

    Google Scholar
     

  • Branchu, P. et al. Impact of temperature on Marinobacter hydrocarbonoclasticus SP17 morphology and biofilm structure during growth on alkanes. Microbiology 163, 669–677 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J. et al. Relative influence of plastic debris size and shape, chemical composition and phytoplankton-bacteria interactions in driving seawater plastisphere abundance, diversity and activity. Front. Microbiol. 11, 610231 (2021).

    Article 

    Google Scholar
     

  • Singleton, S. L. et al. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front. Microbiol. 14, 1259014 (2023).

    Article 

    Google Scholar
     

  • Chow, J., Perez-Garcia, P., Dierkes, R. & Streit, W. R. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb. Biotechnol. 16, 195–217 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fang, C. et al. Unveiling the impact of microplastics with distinct polymer types and concentrations on tidal sediment microbiome and nitrogen cycling. J. Hazard. Mater. 472, 134387 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Capolupo, M. et al. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. Environ. Pollut. 319, 120951 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pivokonsky, M. et al. Insight into the fate of bioplastic and similar plant-based material debris in aquatic environments via continuous monitoring of their leachate composition—release of carbon, metals, and additives. Sci. Total Environ. 949, 174913 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Corinaldesi, C. et al. High rates of viral lysis stimulate prokaryotic turnover and C recycling in bathypelagic waters of a Ligurian canyon (Mediterranean Sea). Prog. Oceanogr. 171, 70–75 (2019).

    Article 

    Google Scholar
     

  • Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

    Article 

    Google Scholar
     

  • da Costa, V. S. et al. Marine climate indicators in the Adriatic Sea. Front. Clim. 6, 1449633 (2024).

    Article 

    Google Scholar
     

  • Jasso-Salcedo, A. B. et al. Disintegration of commercial single-use plastics from synthetic and biobased origins and effects on plant growth. Polym. Degrad. Stab. 230, 111071 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Danovaro, R. Methods for the Study of Deep-sea Sediments, Their Functioning and Biodiversity (CRC Press, 2010).

  • Gerchakov, S. M. & Hatcher, P. G. Improved technique for analysis of carbohydrates in sediments. Limnol. Oceanogr. 17, 938–943 (1972).

    Article 
    CAS 

    Google Scholar
     

  • Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    Article 

    Google Scholar
     

  • Socal, G. et al. Metodologie di studio del plancton marino. ISPRA Manuali e Linee Guida 56/2010 (2010).

  • Dell’Anno, A., Corinaldesi, C., Magagnini, M. & Danovaro, R. Determination of viral production in aquatic sediments using the dilution-based approach. Nat. Protoc. 4, 1013–1022 (2009).

    Article 

    Google Scholar
     

  • Danovaro, R. et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454, 1084–1087 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 

    Google Scholar
     

  • Callahan, B. Silva taxonomic training data formatted for DADA2 (Silva version 132) (2018).

  • Montgomery, D. C. Design and Analysis of Experiments (John Wiley & Sons, 2017).

  • Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proc. SIGCHI Conf. Hum. Factors Comput. Syst. 143–146 (ACM, 2011).

  • Edgar, R. C. Updating the 97 % identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hughes, J. B. & Hellmann, J. J. The application of rarefaction techniques to molecular inventories of microbial diversity. Methods Enzymol. 397, 292–308 (2005).

    Article 
    CAS 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article 

    Google Scholar