• de Candolle AP. Mémoires sur la famille des Légumineuses. Annales des Sciences Naturelles. 1825;4:90–103.

  • Egan AN, Vatanparast M, Cagle W. Parsing polyphyletic Pueraria: delimiting distinct evolutionary lineages through phylogeny. Mol Phylogenet Evol. 2016;104:44–59. https://doi.org/10.1016/j.ympev.2016.08.001.

    Article 
    PubMed 

    Google Scholar
     

  • Sun J, Wang Y, Qiao P, Zhang L, Li E, Dong W, et al. Pueraria montana population structure and genetic diversity based on chloroplast genome data. Plants. 2023;12(12):2231. https://doi.org/10.3390/plants12122231.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Shang XH, Xiao L, Wu ZD, Cao S, Yan HB. Comparative plastomes of Pueraria Montana var. Lobata (Leguminosae: Phaseoleae) and closely related taxa: insights into phylogenomic implications and evolutionary divergence. BMC Genomics. 2023;24(1):299. https://doi.org/10.1186/s12864-023-09356-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hai YL, Huang XJ, Sun HZ, Sun J, Li J, Zhang YT, et al. Comparative analysis of the complete chloroplast genome of Pueraria provides insights for species identification, phylogenetic relationships, and taxonomy. BMC Plant Biol. 2024;24:1196. https://doi.org/10.1186/s12870-024-05905-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanović S, Pfeil BE, Palmer JD, Doyle JJ. Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Syst Bot. 2009;34:115–28.

    Article 

    Google Scholar
     

  • Zeng M, Ma YJ, Zheng SQ, Xu JF, Di XH. Studies on ribosomal DNA sequence analyses of radix puerariae and its sibling species. Chin Pharmaceut J. 2003;38(3):13–5.

  • Jiang XH, Liu LK, She CW. Genetic analysis of 11 Pueraria species based on NrITS sequence. Jiangsu J Agricul Sci. 2015;43(7):46–9.


    Google Scholar
     

  • Jiang XH, Liu LK, She CW. Study on classification consistency based on morphology and rDNA ITS sequences of Pueraria species. Hubei Agric Sci. 2016;55(4):939–42.


    Google Scholar
     

  • Cagle W. Parsing polyphyletic Pueraria: delimiting distinct evolutionary lineages through phylogeny. Ph.D. Dissertation. North Carolina: East Carolina University. 2013.

  • Egan AN, Pan B. Resolution of polyphyly in Pueraria (Leguminosae, Papilionoideae): the creation of two new genera, Haymondia and Toxicopueraria, the resurrection of Neustanthus, and a new combination in Teyleria. Phytotaxa. 2015;218:201–26.

    Article 

    Google Scholar
     

  • Pan B, Yao X, Corlett RT, Yu WB. Pueraria omeiensis (Fabaceae), a new species from Southwest China. Taivania. 2023;68(1):31–8.


    Google Scholar
     

  • Haynsen MS, Vatanparast M, Mahadwar G, Zhu D, Moger-Reischer RZ, Doyle JJ, Crandall KA, Egan AN. De novo transcriptome assembly of Pueraria montana var. lobata and Neustanthus phaseoloides for the development of eSSR and SNP markers: narrowing the US origin(s) of the invasive kudzu. BMC Genomics. 2019;19:439. https://doi.org/10.1186/s12864-018-4798-3.

    Article 
    CAS 

    Google Scholar
     

  • Suntichaikamolkul N, Tantisuwanichkul K, Prombutara P, Kobtrakul K, Zumsteg J, Wannachart S, et al. Transcriptome analysis of Pueraria candollei var. Mirifica for gene discovery in the biosyntheses of isoflavones and Miroestrol. BMC Plant Biol. 2019;19(1):581. https://doi.org/10.1186/s12870-019-2205-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Li CF, Zhou C, Li J, Zhang YS. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. Plant J. 2017;90:535–46. https://doi.org/10.1111/tpj.13510.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang CK, Xu NG, Cui S. Comparative transcriptome analysis of roots, stems, and leaves of Pueraria Lobata (Willd.) ohwi: identification of genes involved in isoflavonoid biosynthesis. PeerJ. 2021;9:e10885. https://doi.org/10.7717/peerj.10885.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang XH, Huang D, Wang Y, Xiao L, Ming RH, Zeng WD, et al. Identification of nutritional ingredients and medicinal components of Pueraria lobata and its varieties using UPLC-MS/MS-based metabolomics. Molecules. 2021;26(21):6587. https://doi.org/10.3390/molecules26216587.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shang XH, Yi XX, Xiao L, Zhang YS, Huang D, Xia ZB, et al. Chromosomal-level genome and multi-omics dataset of Pueraria lobata var. Thomsonii provide new insights into legume family and the isoflavone and puerarin biosynthesis pathways. Hortic Res. 2022;9:uhab035. https://doi.org/10.1093/hr/uhab035.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao YY, Zhang R, Jiang KW, Qi J, Hu Y, Guo J, et al. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in fabaceae. Mol Plant. 2021;14(5):748–73. https://doi.org/10.1016/j.molp.2021.02.006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang XZ, Gong SD, Shang XH, Gao M, Zhao BY, Xiao L, et al. High-integrity Pueraria Montana var. Lobata genome and population analysis revealed the genetic diversity of Pueraria genus. DNA Res. 2024;31(3):dsae017. https://doi.org/10.1093/dnares/dsae017.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bock DG, Cai Z, Elphinstone C, González-Segovia E, Hirabayashi K, Huang K, et al. Genomics of plant speciation. Plant Commun. 2023;4:100599. https://doi.org/10.1016/j.xplc.2023.100599.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, et al. Phylogenomics and the rise of the angiosperms. Nature. 2024;629(80113):843–50. https://doi.org/10.1038/s41586-024-07324-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin ZT, Hodel RGJ, Ma DK, Wang H, Liu GN, Ren C, et al. Nightmare or delight: taxonomic circumscription Meets reticulate evolution in the phylogenomic. Mol Phylogenet Evol. 2023;189:107914. https://doi.org/10.1016/j.ympev.2023.107914.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skopalíková J, Leong-Škorničková J, Šída O, Newman M, Chumová Z, Zeisek V, et al. Ancient hybridization in Curcuma (Zingiberaceae)—accelerator or brake in lineage diversifications? Plant J. 2023;116(3):773–85. https://doi.org/10.1111/tpj.16408.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu J, Niu YT, You YC, Cox CJ, Barrett RL, Trias-Blasi A, et al. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan mountains. New Phytol. 2023;238(2):888–903. https://doi.org/10.1111/nph.18580.

    Article 
    PubMed 

    Google Scholar
     

  • Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: detection and utility in the phylogenomics era. Mol Phylogenet Evol. 2024;201:108197. https://doi.org/10.1016/j.ympev.2024.108197.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, et al. Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311–6. https://doi.org/10.1038/nature25447.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369:578–81. https://doi.org/10.1126/science.abc1234.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Renner MAM, Foster CSP, Miller JT, Murphy DJ. Increased diversification rates are coupled with higher rates of climate space exploration in Australian Acacia (Caesalpinioideae). New Phytol. 2020;226(2):609–22. https://doi.org/10.1111/nph.16349.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, et al. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol Biol Evol. 2022;39(1):msab314. https://doi.org/10.1093/molbev/msab314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu HY, Sun PC, Yang YZ, Ma JX, Liu JQ. Genome-scale angiosperm phylogenies based on nuclear, plastome, and mitochondrial datasets. J Integr Plant Biol. 2023;65:1479–89. https://doi.org/10.1111/jipb.13455.

    Article 
    PubMed 

    Google Scholar
     

  • Wan JN, Wang SW, Leitch AR, Leitch IJ, Jian JB, Wu ZY, et al. The rise of baobab trees in Madagascar. Nature. 2024;629(8014):1091–9. https://doi.org/10.1038/s41586-024-07447-4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen CL, Ruhfel BR, Li JL, Wang ZF, Zhang LS, Zhang L, et al. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated. J Integr Plant Biol. 2023;65:1490–504. https://doi.org/10.1111/jipb.13464.

    Article 
    PubMed 

    Google Scholar
     

  • Wang XX, Huang CH, Morales-Briones DF, Wang XY, Hu Y, Zhang N, et al. Phylotranscriptomics reveals the phylogeny of asparagales and the evolution of allium flavor biosynthesis. Nat Commun. 2024;15(1):9663. https://doi.org/10.1038/s41467-024-53943-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang FS, Wang SH, Wu YL, Jiang D, Yi Q, Zhang MM, et al. Haplotype-resolved genome of a Papeda provides insights into the geographical origin and evolution of Citrus. J Integr Plant Biol. 2025;67(2):276–93. https://doi.org/10.1111/jipb.13819.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng HW, Ling YY, Xiang KL, Erst AS, Li XQ, Lian L, et al. Repeated evolution of storage root and invasions of alpine biome drove replicated radiations of the Megadiverse corydalis (Papaveraceae) in the Qinghai–Tibet plateau. Syst Biol. 2025;syaf014. https://doi.org/10.1093/sysbio/syaf014.

    Article 

    Google Scholar
     

  • Ohashi H, Tateishi Y, Nemoto T, Endo Y. Taxonomic studies on the leguminosae of Taiwan III. Sci Rep Tohoku Univ Ser 4 Biol. 1988;4 39:191–248.


    Google Scholar
     

  • van der Maesen LJG. Revision of the genus Pueraria DC. with some notes on Teyleria Backer (Leguminiosae). Ph.D. Dissertation. Netherlands: WageningenAgricultural University. 1985;85:1–130.

  • van der Maesen LJG. Pueraria: botanical characteristics. In: Keung WM, editor. The genus Pueraria. London: Taylor Francis; 2002. pp. 1–30.


    Google Scholar
     

  • Wu TL. Pueraria DC. In: Li SK. ed. Flora Reipublicae Popularis Sinicae. Beijing: Science Press. 1995;41:219–229.

  • Wu DL, Thulin M. Pueraria. In: Flora China. 2020;10:244–8.


    Google Scholar
     

  • Zang DK, Li WQ, Xie JM. A New Taxa from Shandong Province of China. J Shandong Agric Univ (Nat Sci). 2016;47(1):30.

  • Losos JB. Convergence, adaptation, and constraint. Evol. 2011;65(7):1827–40. https://doi.org/10.1111/j.1558-5646.2011.01289.x.

    Article 

    Google Scholar
     

  • Schat JK, Ehlert E, Kavanaugh DH, Dudko BY, Schoville SD. Ecomorphological convergence following niche shifts in montane ground beetles (Carabidae: Nebria). Ecol Evol. 2025;15(2):e70986. https://doi.org/10.1002/ece3.70986.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapli P, Yang Z, Telford MJ. Phylogenetic tree building in the genomic age. Nat Rev Genet. 2020;21:428–44. https://doi.org/10.1038/s41576-020-0233-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong H, Wang D, Shao C, Yang X, Yang J, Ma T, et al. Species tree estimation and the impact of gene loss following whole-genome duplication. Syst Biol. 2022;71(6):1348–61. https://doi.org/10.1093/sysbio/syac040.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang XX, Zhang DY. Impact of ghost introgression on coalescent-based species tree inference and estimation of divergence time. Syst Biol. 2023;72(1):35–49. https://doi.org/10.1093/sysbio/syac047.

    Article 
    PubMed 

    Google Scholar
     

  • Steenwyk JL, Li YN, Zhou XF, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet. 2023;24:834–50. https://doi.org/10.1038/s41576-023-00620-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang GD, Chen GZ, Ke JH, Wang JY, Zhang DY, Liu DK, et al. The Annona montana genome reveals the development and flavor formation in mountain soursop fruit. Ornamental Plant Research. 2023;3:14. https://doi.org/10.48130/OPR-2023-0014.

    Article 

    Google Scholar
     

  • Rieseberg LH, Willis JH. Plant speciation. Science. 2007;317(5840):910–4. https://doi.org/10.1126/science.1137729.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang R, Wang YH, Jin JJ, Stull GW, Bruneau A, Cardoso D, et al. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of leguminosae. Syst Biol. 2020;69(4):613–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bogdanova VS, Shatskaya NV, Mglinets AV, Kosterin OE, Vasiliev GV. Discordant evolution of organellar genomes in peas (Pisum L). Mol Phylogenet Evol. 2021;160:107136.

    Article 
    PubMed 

    Google Scholar
     

  • Ohashi H. A new species of Pueraria (Leguminosae) from Guizhou. J Jpn Bot. 2005;80:9–13.


    Google Scholar
     

  • Liu R, Wang H, Yang JB, Corlett RT, Randle CP, Li DZ, et al. Cryptic species diversification of the Pedicularis siphonantha complex (Orobanchaceae) in the mountains of Southwest China since the pliocene. Front Plant Sci. 2022;13:811206. https://doi.org/10.3389/fpls.2022.811206.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales-Briones DF, Liston A, Tank DC. Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). New Phytol. 2018;218(4):1668–84. https://doi.org/10.1111/nph.15099.

    Article 
    PubMed 

    Google Scholar
     

  • Bouchenak-Khelladi Y, Onstein RE, Xing Y, Schwery O, Linder HP. On the complexity of triggering evolutionary radiations. New Phytol. 2015;207:313–26. https://doi.org/10.1111/nph.13327.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves. New Phytol. 2019;221:706–24. https://doi.org/10.1111/nph.15371.

    Article 
    PubMed 

    Google Scholar
     

  • Liu WS, Zheng L, Qi DH. Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecol Evol. 2020;10(15):8166–75. https://doi.org/10.1002/ece3.6519.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filartiga LA, Klimeš A, Altman J, Nobis MP, Crivellaro A, Schweingruber F, Doležal J. Comparative anatomy of leaf petioles in temperate trees and shrubs: the role of plant size, environment and phylogeny. Ann Bot. 2022;129:567–82. https://doi.org/10.1093/aob/mcac014.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurul-aini CAC, Noraini T, Latiff A, Chung RCK, Nurhanim MN, Ruzi M. Systematic significance of petiole anatomical characteristics in Microcos L. (Malvaceae: Grewioideae). Malay Nat J. 2013;65(23):145–70.


    Google Scholar
     

  • Alosaimi AA. Petiole anatomy of selected species in family lamiaceae and its systematic relevance. Flora. 2023;306:152367. https://doi.org/10.1016/j.flora.2023.152367.

    Article 

    Google Scholar
     

  • Sharma V, Chaudhary S, Kumar A, Kumar S. COCHLEATA controls leaf size and secondary inflorescence architecture via negative regulation of UNIFOLIATA (LEAFY ortholog) gene in garden pea Pisum sativum. J Biosci. 2012a;37(S1):1041–59. https://doi.org/10.1007/s12038-012-9263-x.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma V, Sinha AK, Chaudhary S, Priyadarshini A, Tripathi B, Kumar S. Genetic analysis of structure and function of stipules in pea (Pisum sativum). Proc Indian Natl Sci Acad. 2012b;78:9–34.


    Google Scholar
     

  • Sharma V, Kumar S. Stipules are the principal photosynthetic organs in the papilionoid species Lathyrus aphaca. Natl Acad Sci Lett. 2012;35:75–8. https://doi.org/10.1007/s40009-012-0031-0.

    Article 

    Google Scholar
     

  • Zhang JJ, Wang X, Han L, Zhang J, Xie YY, Li J, et al. The formation of stipule requires the coordinated actions of the legume orthologs of Arabidopsis BLADE-ON-PETIOLE and LEAFY. New Phytol. 2022;236(4):1512–28. https://doi.org/10.1111/nph.18445.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee C, Choi IS, Cardoso D, de Lima HC, de Queiroz LP, Wojciechowski MF, et al. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. Plant J. 2021;107(3):861–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yang M, Li Y, Jiang M, Liu C, He M, et al. Chloroplast genomes of two Pueraria DC. species: sequencing, comparative analysis and molecular marker development. FEBS Open Bio. 2022;12(2):349–61.

    Article 
    PubMed 

    Google Scholar
     

  • Shi PL, Zhou Y, Shang XH, Xiao L, Zeng WD, Cao S, et al. Assessment of genetic diversity and identification of core germplasm of pueraria in Guangxi using SSR markers. Trop Plants. 2024;3:e012.

    Article 

    Google Scholar
     

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lohse M, Drechsel O, Bock R. Organellargenomedraw (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007;52:267–74. https://doi.org/10.1007/s00294-007-0161-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amiryousefi A, Hyvönen J, Poczai P, IRscope. An online program to visualize the junction sites of Chloroplast genomes. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty220.

    Article 
    PubMed 

    Google Scholar
     

  • Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147. https://doi.org/10.1371/journal.pone.0011147.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beier S, Thiel T, Munch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33(16):2583–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001;29(22):4633–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergsten J. A review of long‐branch attraction. Cladistics. 2005;21:163–93. https://doi.org/10.1111/j.1096-0031.2005.00059.x.

    Article 
    PubMed 

    Google Scholar
     

  • Attigala L, Wysocki WP, Duvall MR. Phylogenetic estimation and morphological evolution of arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Mol Phylogenet Evol. 2016;101:111–21. https://doi.org/10.1016/j.ympev.2016.05.008.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Y, Zhang YQ, Xing XC, Zhang JQ, Ren Y. Straight from the plastome: molecular phylogeny and morphological evolution of fargesia (Bambusoideae: Poaceae). Front Plant Sci. 2019;10:981. https://doi.org/10.3389/fpls.2019.00981.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darriba D, Taboada GL, Doallo R, Posada D. Jmodeltest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. https://doi.org/10.1038/nmeth.2109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). LA: New Orleans. 2010;1–8. https://doi.org/10.1109/GCE.2010.5676129.

  • Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57(5):758–71. https://doi.org/10.1080/10635150802429642.

    Article 
    PubMed 

    Google Scholar
     

  • Ronquist F, Teslenk M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics. 2015. https://doi.org/10.1093/bioinformatics/btv234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent. Bioinformatics. 2014;30:3317–24. https://doi.org/10.1093/bioinformatics/btu523.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chifman J, Kubatko L. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. J Theor Biol. 2015;374:35–47. https://doi.org/10.1016/j.jtbi.2015.03.006.

    Article 
    PubMed 

    Google Scholar
     

  • Rambaut A. FigTree v1.4.4. 2018. URL: https://github

  • Sukumaran J, Holder MT. Dendropy: a python library for phylogenetic computing. Bioinformatics. 2010;26:1569–71. https://doi.org/10.1093/bioinformatics/btq228.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huson DH, Bryant D. The splitstree app: interactive analysis and visualization using phylogenetic trees and networks. Nat Methods. 2024;21:1773–4. https://doi.org/10.1038/s41592-024-02406-3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version. 2023;3:81. http://www.mesquiteproject.org.


    Google Scholar