• McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).


    Google Scholar
     

  • Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    Article 

    Google Scholar
     

  • Wanjura, C. C. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023).

    Article 

    Google Scholar
     

  • Valcárcel, G. J., Patera, G., Treps, N. & Fabre, C. Multimode squeezing of frequency combs. Phys. Rev. A 74, 061801 (2006).

    Article 

    Google Scholar
     

  • Roslund, J., Araújo, R. M., Jiang, S., Fabre, C. & Treps, N. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109–112 (2014).

    Article 

    Google Scholar
     

  • Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

    Article 

    Google Scholar
     

  • Cai, Y. et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645 (2017).

    Article 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 

    Google Scholar
     

  • Wan, L.-L. & Lü, X.-Y. Quantum-squeezing-induced point-gap topology and skin effect. Phys. Rev. Lett. 130, 203605 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Flynn, V. P., Cobanera, E. & Viola, L. Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians. N. J. Phys. 22, 083004 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015).

    Article 

    Google Scholar
     

  • Luo, X.-W., Zhang, C. & Du, S. Quantum squeezing and sensing with pseudo-anti-parity-time symmetry. Phys. Rev. Lett. 128, 173602 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Uddin, S. Z. et al. Noise-immune quantum correlations of intense light. Nat. Photon. 19, 751–757 (2025).

    Article 

    Google Scholar
     

  • Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Braunstein, S. L. & Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Leefmans, C. et al. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys. 18, 442–449 (2022).

    Article 

    Google Scholar
     

  • Wang, Y.-X. & Clerk, A. A. Non-Hermitian dynamics without dissipation in quantum systems. Phys. Rev. A 99, 063834 (2019).

    Article 

    Google Scholar
     

  • Roy, A., Jahani, S., Langrock, C., Fejer, M. & Marandi, A. Spectral phase transitions in optical parametric oscillators. Nat. Commun. 12, 835 (2021).

    Article 

    Google Scholar
     

  • Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically induced squeezing. Nature 606, 82–87 (2022).

    Article 

    Google Scholar
     

  • Slim, J. J. et al. Optomechanical realization of the bosonic Kitaev chain. Nature 627, 767–771 (2024).

    Article 

    Google Scholar
     

  • Chembo, Y. K. Quantum dynamics of Kerr optical frequency combs below and above threshold: spontaneous four-wave mixing, entanglement, and squeezed states of light. Phys. Rev. A 93, 033820 (2016).

    Article 

    Google Scholar
     

  • Yang, Z. et al. A squeezed quantum microcomb on a chip. Nat. Commun. 12, 4781 (2021).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601 (2020).

    Article 

    Google Scholar
     

  • Jahanbozorgi, M. et al. Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits. Optica 10, 1100–1101 (2023).

    Article 

    Google Scholar
     

  • Javid, U. A. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023).

    Article 

    Google Scholar
     

  • Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article 

    Google Scholar
     

  • Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article 

    Google Scholar
     

  • Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photon. 11, 671–676 (2017).

    Article 

    Google Scholar
     

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    Article 

    Google Scholar
     

  • Kues, M. et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017).

    Article 

    Google Scholar
     

  • Moille, G., Menyuk, C., Chembo, Y. K., Dutt, A. & Srinivasan, K. Synthetic frequency lattices from an integrated dispersive multi-color soliton. Preprint at https://arxiv.org/abs/2210.09036 (2022).

  • Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).

    Article 

    Google Scholar
     

  • Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photon. 16, 52–58 (2022).

    Article 

    Google Scholar
     

  • Bensemhoun, A. et al. Multipartite entanglement in bright frequency combs out of microresonators. Phys. Lett. A 493, 129272 (2024).

    Article 

    Google Scholar
     

  • Guidry, M. A., Lukin, D. M., Yang, K. Y. & Vučković, J. Multimode squeezing in soliton crystal microcombs. Optica 10, 694–701 (2023).

    Article 

    Google Scholar
     

  • Gouzien, E. et al. Hidden and detectable squeezing from microresonators. Phys. Rev. Res. 5, 023178 (2023).

    Article 

    Google Scholar
     

  • Rüter, C. E. et al. Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article 

    Google Scholar
     

  • Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article 

    Google Scholar
     

  • Zeuner, J. M. et al. Observation of a topological transition in the bulk of a non-Hermitian system. Phys. Rev. Lett. 115, 040402 (2015).

    Article 

    Google Scholar
     

  • Weimann, S. et al. Topologically protected bound states in photonic parity-time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    Article 

    Google Scholar
     

  • Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article 

    Google Scholar
     

  • Chembo, Y. K. & Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013).

    Article 

    Google Scholar
     

  • Coen, S. & Haelterman, M. Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity. Opt. Lett. 26, 39–41 (2001).

    Article 

    Google Scholar
     

  • Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    Article 

    Google Scholar
     

  • Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics. Phys. Rev. A 93, 043827 (2016).

    Article 

    Google Scholar
     

  • Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article 

    Google Scholar
     

  • Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019).

    Article 

    Google Scholar
     

  • Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article 

    Google Scholar
     

  • Dutt, A. et al. Creating boundaries along a synthetic frequency dimension. Nat. Commun. 13, 3377 (2022).

    Article 

    Google Scholar
     

  • Herr, T. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012).

    Article 

    Google Scholar
     

  • Marino, A. M., Stroud, J., Wong, V., Bennink, R. S. & Boyd, R. W. Bichromatic local oscillator for detection of two-mode squeezed states of light. J. Opt. Soc. Am. B 24, 335–339 (2007).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Large-scale cluster quantum microcombs. Light Sci. Appl. 14, 164 (2025).

    Article 

    Google Scholar
     

  • Jia, X. et al. Continuous-variable multipartite entanglement in an integrated microcomb. Nature 639, 329–336 (2025).

    Article 

    Google Scholar
     

  • Herman, D. I. et al. Squeezed dual-comb spectroscopy. Science 387, 653–658 (2025).

    Article 

    Google Scholar
     

  • McCuller, L. et al. Frequency-dependent squeezing for advanced LIGO. Phys. Rev. Lett. 124, 171102 (2020).

    Article 

    Google Scholar
     

  • Leefmans, C. R. et al. Cavity soliton-induced topological edge states. Preprint at https://arxiv.org/abs/2311.04873 (2023).

  • Flower, C. J. et al. Observation of topological frequency combs. Science 384, 1356–1361 (2024).

    Article 

    Google Scholar
     

  • Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article 

    Google Scholar
     

  • Wang, W. et al. Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation. Nat. Commun. 13, 5123 (2022).

    Article 

    Google Scholar
     

  • Gouzien, E., Tanzilli, S., D’Auria, V. & Patera, G. Morphing supermodes: a full characterization for enabling multimode quantum optics. Phys. Rev. Lett. 125, 103601 (2020).

    Article 

    Google Scholar
     

  • Lustig, E., Guidry, M. A., Lukin, D. M., Shanhui, F. & Vučković, J. Quadrature-dependent lattice dynamics of dissipative microcombs data. figshare https://doi.org/10.6084/m9.figshare.29652338 (2025).