• Crops and Drops (FAO, 2002).

  • Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).

    Article 

    Google Scholar
     

  • Shubitz, S. Irrigating the West: Interest Group Lobbying and the Reclamation Act of 1902 (SAGE Publications: SAGE Business Cases Originals, 2021).

  • Subramanian, K. Revisiting the Green Revolution: Irrigation and Food Production in Twentieth-Century India (King’s College London, 2015).

  • Al-Shayaa, M., Baig, M. & Straquadine, G. Agricultural extension in the Kingdom of Saudi Arabia: difficult present and demanding future. J. Anim. Plant Sci. 22, 239–246 (2012).


    Google Scholar
     

  • Döll, P., Fiedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413–2432 (2009).

    Article 

    Google Scholar
     

  • Wada, Y., Graaf, I. & Beek, L. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 8, 735–763 (2016).

    Article 

    Google Scholar
     

  • Cook, B., Shukla, S., Puma, M. & Nazarenko, L. Irrigation as an historical climate forcing. Clim. Dyn. 44, 1715–1730 (2015).

    Article 

    Google Scholar
     

  • Yao, Y. et al. Impacts of irrigation expansion on moist-heat stress based on IRRMIP results. Nat. Commun. 16, 1045 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasarer, L., Taylor, J., Rigby, J. & Locke, M. Trends in land use, irrigation, and streamflow alteration in the Mississippi River alluvial plain. Front. Environ. Sci. 8, 66 (2020).

    Article 

    Google Scholar
     

  • Yin, Z. et al. Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrol. Earth Syst. Sci. 25, 1133–1150 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wine, M. & Laronne, J. In water-limited landscapes, an anthropocene exchange: trading lakes for irrigated agriculture. Earth’s Future 8, e2019EF001274 (2020).

    Article 

    Google Scholar
     

  • Oster, J. & Wichelns, D. Economic and agronomic strategies to achieve sustainable irrigation. Irrig. Sci. 22, 107–120 (2003).

    Article 

    Google Scholar
     

  • Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 104002 (2018).

    Article 

    Google Scholar
     

  • Rosa, L. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ. Res. Lett. 17, 063008 (2022).

    Article 

    Google Scholar
     

  • Mehta, P. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat. Water 2, 254–261 (2024).

    Article 

    Google Scholar
     

  • Siebert, S. et al. Groundwater use for irrigation-a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article 

    Google Scholar
     

  • Scanlon, B. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Jiang, Y., Wang, H., Huang, Q. & Deng, H. Groundwater irrigation and management in northern China: status, trends, and challenges. Int. J. Water Resour. Dev. 36, 670–696 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rodell, M., Velicogna, I. & Famiglietti, J. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Yaari, A., Ducharne, A., Thiery, W., Cheruy, F. & Lawrence, D. The role of irrigation expansion on historical climate change: insights from CMIP6. Earth’s Future 10, e2022EF002859 (2022).

    Article 

    Google Scholar
     

  • McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. 4, 435–453 (2023).

    Article 

    Google Scholar
     

  • Thiery, W. et al. Present-day irrigation mitigates heat extremes. J. Geophys. Res. Atmos. 122, 1403–1422 (2017).

    Article 

    Google Scholar
     

  • Chou, C., Ryu, D., Lo, M., Wey, H. & Malano, H. Irrigation-induced land-atmosphere feedbacks and their impacts on Indian summer monsoon. J. Clim. 31, 8785–8801 (2018).

    Article 

    Google Scholar
     

  • Kang, S. & Eltahir, E. Impact of irrigation on regional climate over Eastern China. Geophys. Res. Lett. 46, 5499–5505 (2019).

    Article 

    Google Scholar
     

  • Lo, M. et al. Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia. Environ. Res. Lett. 16, 064049 (2021).

    Article 

    Google Scholar
     

  • Alter, R., Fan, Y., Lintner, B. & Weaver, C. Observational evidence that Great Plains irrigation has enhanced summer precipitation intensity and totals in the midwestern United States. J. Hydrometeorol. 16, 1717–1735 (2015).

    Article 

    Google Scholar
     

  • Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leng, G., Huang, M., Tang, Q. & Leung, L. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate. J. Adv. Model. Earth Syst. 7, 1285–1304 (2015).

    Article 

    Google Scholar
     

  • Hurtt, G. et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    Article 

    Google Scholar
     

  • Molle, F. & Sanchis-Ibor, C. in Irrigation In The Mediterranean: Technologies, Institutions And Policies (eds Molle, F., Sanchis-Ibor, C. & Avellà-Reus, L.) 279–313 (Springer, 2019).

  • Bilgen, A. The Southeastern Anatolia Project (GAP) revisited: the evolution of GAP over forty years. New Perspect. Turkey 58, 125–154 (2018).

    Article 

    Google Scholar
     

  • Saatsaz, M. A historical investigation on water resources management in Iran. Environ. Dev. Sustain. 22, 1749–1785 (2020).

    Article 

    Google Scholar
     

  • Gu, G. & Adler, R. Spatial patterns of global precipitation change and variability during 1901–2010. J. Clim. 28, 4431–4453 (2015).

    Article 

    Google Scholar
     

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Z. et al. Improvement of the irrigation scheme in the ORCHIDEE land surface model and impacts of irrigation on regional water budgets over China. J. Adv. Model. Earth Syst. 12, e2019MS001770 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y. et al. Implementation and evaluation of irrigation techniques in the community land model. J. Adv. Model. Earth Syst. 14, e2022MS003074 (2022).

    Article 

    Google Scholar
     

  • Vanderkelen, I. et al. Evaluating a reservoir parametrisation in the vector-based global routing model mizuRoute (v2. 0.1) for Earth system model coupling. Geosci. Model Dev. Discuss. 15, 4163–4192 (2022).

    Article 

    Google Scholar
     

  • Taranu, S. et al. Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2. 1. EGUsphere 2024, 1–44 (2024).


    Google Scholar
     

  • Li, Z., Liu, T., Huang, Y., Peng, J. & Ling, Y. Evaluation of the CMIP6 precipitation simulations over global land. Earth’s Future 10, e2021EF002500 (2022).

    Article 

    Google Scholar
     

  • Wang, Z., Zhan, C., Ning, L. & Guo, H. Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theoret. Appl. Climatol. 143, 521–531 (2021).

    Article 

    Google Scholar
     

  • Rosa, L., Chiarelli, D., Rulli, M., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dangar, S., Asoka, A. & Mishra, V. Causes and implications of groundwater depletion in India: a review. J. Hydrol. 596, 126103 (2021).

    Article 

    Google Scholar
     

  • Konikow, L. Groundwater Depletion in the United States (1900–2008) (USGS, 2013).

  • Xanke, J. & Liesch, T. Quantification and possible causes of declining groundwater resources in the Euro-Mediterranean region from 2003 to 2020. Hydrogeol. J. 30, 379–400 (2022).

    Article 

    Google Scholar
     

  • Davis, K. et al. Water limits to closing yield gaps. Adv. Water Resour. 99, 67–75 (2017).

    Article 

    Google Scholar
     

  • Jägermeyr, J. et al. Water savings potentials of irrigation systems: global simulation of processes and linkages. Hydrol. Earth Syst. Sci. 19, 3073–3091 (2015).

    Article 

    Google Scholar
     

  • Zhou, X. et al. Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework. Agric. Water Manage. 249, 106793 (2021).

    Article 

    Google Scholar
     

  • Touil, S. et al. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 71, 1396–1416 (2022).

    Article 

    Google Scholar
     

  • Grafton, R. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arboleda-Obando, P., Ducharne, A., Cheruy, F. & Ghattas, J. Joint evolution of irrigation, the water cycle and water resources under a strong climate change scenario from 1950 to 2100 in the IPSL-CM6. Preprint at https://doi.org/10.5194/esd-2024-41 (2025).

  • Rosa, L. & Sangiorgio, M. Global water gaps under future warming levels. Nat. Commun. 16, 1192 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl Acad. Sci. USA 117, 29526–29534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wichelns, D. & Oster, J. Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric. Water Manage. 86, 114–127 (2006).

    Article 

    Google Scholar
     

  • Schmitt, R., Rosa, L. & Daily, G. Global expansion of sustainable irrigation limited by water storage. Proc. Natl Acad. Sci. USA 119, e2214291119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

    Article 

    Google Scholar
     

  • Rosa, L., Chiarelli, D., Tu, C., Rulli, M. & D’Odorico, P. Global unsustainable virtual water flows in agricultural trade. Environ. Res. Lett. 14, 114001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Gao, B., Hu, Y., Huang, W. & Cui, S. Environmental effects of sustainability-oriented diet transition in China. Resour. Conserv. Recycl. 158, 104802 (2020).

    Article 

    Google Scholar
     

  • Clark, M., Hill, J. & Tilman, D. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 43, 109–134 (2018).

    Article 

    Google Scholar
     

  • Mialyk, O., Schyns, J., Booij, M., Su, H., Hogeboom, R. & Berger, M. Water footprints and crop water use of 175 individual crops for 1990–2019 simulated with a global crop model. Sci. Data 11, 206 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danabasoglu, G. et al. The community earth system model version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 

    Google Scholar
     

  • Felfelani, F., Lawrence, D. & Pokhrel, Y. Representing intercell lateral groundwater flow and aquifer pumping in the community land model. Water Resour. Res. 57, e2020WR027531 (2021).

    Article 

    Google Scholar
     

  • Golaz, J. et al. The DOE E3SM coupled model version 1: overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. 11, 2089–2129 (2019).

    Article 

    Google Scholar
     

  • Huang, Z. et al. Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns. Hydrol. Earth Syst. Sci. 22, 2117–2133 (2018).

    Article 

    Google Scholar
     

  • Decharme, B., Costantini, M. & Colin, J. A simple approach to represent irrigation water withdrawals in Earth System Models. J. Adv. Modeli. Earth Systems, 17, e2024MS004508 (2025).

  • Yokohata, T. et al. MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geosci. Model Dev. 13, 4713–4747 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Arboleda-Obando, P., Ducharne, A., Yin, Z. & Ciais, P. Validation of a new global irrigation scheme in the land surface model ORCHIDEE v2.2. Geosci. Model Dev. 17, 2141–2164 (2024).

    Article 

    Google Scholar
     

  • Tapley, B., Bettadpur, S., Ries, J., Thompson, P. & Watkins, M. GRACE measurements of mass variability in the Earth system. Science 305, 503–505 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schutz, B., Tapley, B. & Born, G. Statistical Orbit Determination (Elsevier, 2004).

  • Save, H. CSR GRACE and GRACE-FO RL06 Mascon Solutions v02 (GRACE, 2020); https://www2.csr.utexas.edu/grace/RL06_mascons.html

  • Yao, Y. Yao_et_al_irrigation-induced_land_water_depletion_aggravated_by_climate_change. figshare https://doi.org/10.6084/m9.figshare.29664485.v1 (2025).

  • Savitzky, A. & Golay, M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article 
    CAS 

    Google Scholar