• Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Malic, E. et al. Dark excitons in transition metal dichalcogenides. Phys. Rev. Mater. 2, 014002 (2018).

    Article 

    Google Scholar
     

  • Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Chand, S. B. et al. Interaction-driven transport of dark excitons in 2D semiconductors with phonon-mediated optical readout. Nat. Commun. 14, 3712 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Park, K. D., Jiang, T., Clark, G., Xu, X. & Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 13, 59–64 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lo, T. W. et al. Plasmonic nanocavity induced coupling and boost of dark excitons in monolayer WSe2 at room temperature. Nano Lett. 22, 1915–1921 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, J. et al. Near-field coupling with a nanoimprinted probe for dark exciton nanoimaging in monolayer WSe2. Nano Lett. 23, 4901–4907 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hasz, K., Hu, Z., Park, K. D. & Raschke, M. B. Tip-enhanced dark exciton nanoimaging and local strain control in monolayer WSe2. Nano Lett. 23, 198–204 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rahaman, M. et al. Observation of room-temperature dark exciton emission in nanopatch-decorated monolayer WSe2 on metal substrate. Adv. Opt. Mater. 9, 2101801 (2021).

    Article 

    Google Scholar
     

  • Wen, X. et al. Pathways of exciton triggered hot-carrier injection at plasmonic metal–transition metal dichalcogenide interface. Adv. Opt. Mater. 10, 2100070 (2022).

    Article 

    Google Scholar
     

  • Shan, H. et al. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light: Sci. Appl. 8, 9 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Deng, M. et al. Light-controlled near-field energy transfer in plasmonic metasurface coupled MoS2 monolayer. Small 16, 2003539 (2020).

    Article 

    Google Scholar
     

  • Brongersma, M. L. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    Article 

    Google Scholar
     

  • Liu, H. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS2. Sci. Adv. 6, eabc9308 (2020).

    Article 
    ADS 

    Google Scholar
     

  • He, Z. et al. Quantum plasmonic control of trions in a picocavity with monolayer WS2. Sci. Adv. 5, eaau8763 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shi, J. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 8, 2001147 (2020).

    Article 

    Google Scholar
     

  • Li, Z. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe2. Nat. Commun. 10, 2469 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Robert, C. et al. Measurement of the spin-forbidden dark excitons in MoS2 and MoSe2 monolayers. Nat. Commun. 11, 4037 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Barbone, M. et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat. Commun. 9, 3721 (2018).

    Article 
    ADS 

    Google Scholar
     

  • He, M. et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun. 11, 618 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Parto, K., Azzam, S. I., Banerjee, K. & Moody, G. Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Akselrod, G. M. et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hoang, T. B. et al. Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6, 7788 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Huang, J., Akselrod, G. M., Ming, T., Kong, J. & Mikkelsen, M. H. Tailored emission spectrum of 2D semiconductors using plasmonic nanocavities. ACS Photonics 5, 552–558 (2018).

    Article 

    Google Scholar
     

  • Robert, C. et al. Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Phys. Rev. B 96, 155423 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dang, J. et al. Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 4, 2 (2020).

    Article 

    Google Scholar
     

  • Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    Article 

    Google Scholar
     

  • Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    Article 

    Google Scholar
     

  • Li, Z. et al. Momentum-dark intervalley exciton in monolayer tungsten diselenide brightened via chiral phonon. ACS Nano 13, 14107–14113 (2019).

    Article 

    Google Scholar
     

  • Molas, M. R. et al. Probing and manipulating valley coherence of dark excitons in monolayer WSe2. Phys. Rev. Lett. 123, 096803 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, X. X. et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liu, E. et al. Gate tunable dark trions in monolayer WSe2. Phys. Rev. Lett. 123, 027401 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. et al. Direct observation of gate-tunable dark trions in monolayer WSe2. Nano Lett. 19, 6886–6893 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, L. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article 
    ADS 

    Google Scholar