• Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Moss, W. E. et al. Drought as an emergent driver of ecological transformation in the twenty-first century. BioScience 74, 524–538 (2024).

    Article 

    Google Scholar
     

  • Sehgal, V., Gaur, N. & Mohanty, B. P. Global flash drought monitoring using surface soil moisture. Water Resour. Res. 57, e2021WR029901 (2021).

    Article 

    Google Scholar
     

  • Yang, L., Wei, W., Chen, L., Jia, F. & Mo, B. Spatial variations of shallow and deep soil moisture in the semi-arid loess plateau, China. Hydrol. Earth Syst. Sci. 16, 3199–3217 (2012).

    Article 

    Google Scholar
     

  • Qing, Y. et al. Accelerated soil drying linked to increasing evaporative demand in wet regions. NPJ Clim. Atmos. Sci. 6, 205 (2023).

    Article 

    Google Scholar
     

  • Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).

    Article 

    Google Scholar
     

  • Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).

    Article 

    Google Scholar
     

  • Harley, R. M. & Walter, H. Ecology of tropical and subtropical vegetation. Kew Bull. 28, 165–166 (1973).

    Article 

    Google Scholar
     

  • Yang, F., Feng, Z., Wang, H., Dai, X. & Fu, X. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agric. For. Meteorol. 234–235, 106–114 (2017).

    Article 

    Google Scholar
     

  • Stocker, B. D. et al. Global patterns of water storage in the rooting zones of vegetation. Nat. Geosci. 16, 250–256 (2023).

    CAS 

    Google Scholar
     

  • Zhou, J. et al. Response of deep soil water deficit to afforestation, soil depth, and precipitation gradient. Agric. For. Meteorol. 352, 110024 (2024).

    Article 

    Google Scholar
     

  • Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Pei, J., Fang, C., Li, B. & Nie, M. Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions. Nat. Commun. 15, 617 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    Article 

    Google Scholar
     

  • Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).

    Article 

    Google Scholar
     

  • Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. & Yang, Y. Spatial-temporal variability pattern of multi-depth soil moisture jointly driven by climatic and human factors in China. J. Hydrol. 619, 129313 (2023).

    Article 

    Google Scholar
     

  • Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Svoboda, M. et al. The drought monitor. Bull. Am. Meteorol. Soc. 83, 1181–1190 (2002).

    Article 

    Google Scholar
     

  • Fan, X. et al. Surging compound drought–heatwaves underrated in global soils. Proc. Natl Acad. Sci. USA 121, e2410294121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Will large-scale forestation lead to a soil water deficit crisis in China’s drylands?. Sci. Bull. 69, 1506–1514 (2024).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Quantification of human contribution to soil moisture-based terrestrial aridity. Nat. Commun. 13, 6848 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting. Part I: theory. Clim. Dynam. 21, 477–491 (2003).

    Article 

    Google Scholar
     

  • Walker, B. H. & Noy-Meir, I. in Ecology of Tropical Savannas (eds Huntley, B. J. & Walker, B. H.) 556–590 (Springer, 1982).

  • Li, Y. et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 4, eaar4182 (2018).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Soil moisture decline in China’s monsoon loess critical zone: more a result of land-use conversion than climate change. Proc. Natl Acad. Sci. USA 121, e2322127121 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Van Loon, A. F. Hydrological drought explained. WIREs Water 2, 359–392 (2015).

    Article 

    Google Scholar
     

  • Ma, F. & Yuan, X. Vegetation greening and climate warming increased the propagation risk from meteorological drought to soil drought at subseasonal timescales. Geophys. Res. Lett. 51, e2023GL107937 (2024).

    Article 

    Google Scholar
     

  • Stéfanon, M., Drobinski, P., D’Andrea, F. & De Noblet-Ducoudré, N. Effects of interactive vegetation phenology on the 2003 summer heat waves. J. Geophys. Res. 117, D24103 (2012).


    Google Scholar
     

  • Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article 

    Google Scholar
     

  • Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zohaib, M., Kim, H. & Choi, M. Evaluating the patterns of spatiotemporal trends of root zone soil moisture in major climate regions in east Asia. J. Geophys. Res. 122, 7705–7722 (2017).

    Article 

    Google Scholar
     

  • Wang, J. et al. Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun. 11, 528 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, S., Mishra, A. K., Zscheischler, J. & Entekhabi, D. Interaction between dry and hot extremes at a global scale using a cascade modeling framework. Nat. Commun. 14, 277 (2023).

    Article 
    CAS 

    Google Scholar
     

  • De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites.Glob. Chang. Biol. 19, 1759–1779 (2013).

    Article 

    Google Scholar
     

  • Chen, Z.-T. et al. Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Adv. Clim. Chang. Res. 13, 251–257 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vereecken, H. et al. Soil hydrology in the earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).

    Article 

    Google Scholar
     

  • Miao, L. et al. Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. NPJ Clim. Atmos. Sci. 7, 67 (2024).

    Article 

    Google Scholar
     

  • Hosseinzadehtalaei, P., Tabari, H. & Willems, P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. J. Hydrol. 590, 125249 (2020).

    Article 

    Google Scholar
     

  • Gu, L. et al. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett. 49, e2022GL097726 (2022).

    Article 

    Google Scholar
     

  • Kendon, E. J., Blenkinsop, S. & Fowler, H. J. When will we detect changes in short-duration precipitation extremes?. J. Clim. 31, 2945–2964 (2018).

    Article 

    Google Scholar
     

  • Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Article 

    Google Scholar
     

  • Ma, H. et al. Surface soil moisture from combined active and passive microwave observations: integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 308, 114197 (2024).

    Article 

    Google Scholar
     

  • Dorigo, W. et al. Evaluating global trends (1988-2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 39, L18405 (2012).

    Article 

    Google Scholar
     

  • Joiner, J. et al. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 219, 339–352 (2018).

    Article 

    Google Scholar
     

  • Balsamo, G. et al. ERA-interim/land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).

    Article 

    Google Scholar
     

  • ERA5-Land Hourly Data from 1950 to Present (CDS, 2019).

  • Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article 

    Google Scholar
     

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar
     

  • Smith, A. B. et al. The Murrumbidgee soil moisture monitoring network data set. Water Resour. Res. 48, W07701 (2012).

    Article 

    Google Scholar
     

  • Dorigo, W. A. et al. The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 15, 1675–1698 (2011).

    Article 

    Google Scholar
     

  • Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, 2012JG002084 (2012).

    Article 

    Google Scholar
     

  • Luo, M. et al. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. Sci. Adv. 10, eadl1598 (2024).

    Article 

    Google Scholar
     

  • Du, J. et al. Machine-learning based multi-layer soil moisture forecasts—an application case study of the Montana 2017 flash drought. Water Resour. Res. 60, e2023WR036973 (2024).

    Article 

    Google Scholar
     

  • Padrón, R. S. et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 13, 477–481 (2020).

    Article 

    Google Scholar
     

  • Gu, X., Li, J., Chen, Y. D., Kong, D. & Liu, J. Consistency and discrepancy of global surface soil moisture changes from multiple model-based data sets against satellite observations. J. Geophys. Res. 124, 1474–1495 (2019).

    Article 

    Google Scholar
     

  • Hirschi, M., Stradiotti, P., Crezee, B., Dorigo, W. & Seneviratne, S. I. Potential of long-term satellite observations and reanalysis products for characterising soil drying: trends and drought events. Hydrol. Earth Syst. Sci. 29, 397–425 (2025).

    Article 

    Google Scholar
     

  • Hsu, H., Dirmeyer, P. A. & Seo, E. Exploring the mechanisms of the soil moisture–air temperature hypersensitive coupling regime. Water Resour. Res. 60, e2023WR036490 (2024).

    Article 

    Google Scholar
     

  • Guan, Y. et al. Increase in ocean-onto-land droughts and their drivers under anthropogenic climate change. NPJ Clim. Atmos. Sci 6, 195 (2023).

    Article 

    Google Scholar
     

  • Wang, H. et al. Anthropogenic climate change has influenced global river flow seasonality. Science 383, 1009–1014 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, R., Liu, Y. & Chen, J. GLOBMAP global leaf area index since 1981. Zenodo https://doi.org/10.5281/ZENODO.4700264 (2021).

  • Kim, H. Global soil wetness project phase 3 atmospheric boundary conditions (experiment 1). DIAS https://doi.org/10.20783/DIAS.501 (2017).

  • Guan, Y. Code for paper ‘anthropogenic exacerbation of soil moisture droughts hidden below the surface’. Zenodo https://doi.org/10.5281/ZENODO.13624543 (2024).