• Hassan J, Eddine RZ, Mann D, et al. The mobile colistin resistance gene, mcr-1.1, is carried on IncX4 plasmids in multidrug resistant E. coli isolated from rainbow trout aquaculture. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8111636.


    Google Scholar
     

  • Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant Gram-negative bacterial infections. Clin Infect Dis. 2005;40(9):1333–41.


    Google Scholar
     

  • Ogunlana L, Kaur D, Shaw LP, et al. Regulatory fine-tuning of mcr-1 increases bacterial fitness and stabilises antibiotic resistance in agricultural settings. ISME J. 2023;17(11):2058–69.


    Google Scholar
     

  • Son SJ, Huang R, Squire CJ, Leung IKH. MCR-1: a promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov Today. 2019;24(1):206–16.


    Google Scholar
     

  • Wu B, Kenry, Hu F. Targeted antibacterial photodynamic therapy with aggregation-induced emission photosensitizers. Interdisciplinary Medicine. 2024;2(1):e20230038.


    Google Scholar
     

  • Wen M, Wang J, Ou Z, et al. Bacterial extracellular vesicles: a position paper by the microbial vesicles task force of the Chinese society for extracellular vesicles. Interdisciplinary Medicine. 2023;1(3):e20230017.


    Google Scholar
     

  • Shen C, Zhong LL, Yang Y, et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. Lancet Microbe. 2020;1(1):e34–43.


    Google Scholar
     

  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.


    Google Scholar
     

  • Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: a current and emerging update. Front Cell Infect Microbiol. 2022;12:941358.


    Google Scholar
     

  • Sun J, Zhang H, Liu YH, Feng Y. Towards understanding MCR-like colistin resistance. Trends Microbiol. 2018;26(9):794–808.


    Google Scholar
     

  • Liu Y, Liu JH. Monitoring colistin resistance in food animals, an urgent threat. Expert Rev Anti Infect Ther. 2018;16(6):443–6.


    Google Scholar
     

  • Walsh TR, Wu Y. China bans colistin as a feed additive for animals. Lancet Infect Dis. 2016;16(10):1102–3.


    Google Scholar
     

  • Shen C, Zhong LL, Zhong Z, et al. Prevalence of mcr-1 in colonized inpatients, China, 2011–2019. Emerg Infect Dis. 2021;27(9):2502–4.


    Google Scholar
     

  • Martino F, Petroni A, Menocal MA, Corso A, Melano R, Faccone D. New insights on mcr-1-harboring plasmids from human clinical Escherichia coli isolates. PLoS One. 2024;19(2):e0294820.


    Google Scholar
     

  • Yin D, Cheng B, Yang K, et al. Complete genetic analysis of plasmids carrying mcr-1 and other resistance genes in avian pathogenic Escherichia coli isolates from diseased chickens in Anhui Province in China. mSphere. 2021. https://doi.org/10.1128/mSphere.01135-20.

  • Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: a review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev. 2022. https://doi.org/10.1093/femsre/fuab049.

  • Chen L, Chavda KD, Al Laham N, et al. Complete nucleotide sequence of a blaKPC-harboring IncI2 plasmid and its dissemination in New Jersey and New York hospitals. Antimicrob Agents Chemother. 2013;57(10):5019–25.


    Google Scholar
     

  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.


    Google Scholar
     

  • Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.


    Google Scholar
     

  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.


    Google Scholar
     

  • Cingolani P, Platts A, le Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.


    Google Scholar
     

  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27(7):1009–10.


    Google Scholar
     

  • Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol. 2022;30(6):534–43.


    Google Scholar
     

  • Yang J, Wang HH, Lu Y, et al. A proQ/finO family protein involved in plasmid copy number control favours fitness of bacteria carrying mcr-1-bearing IncI2 plasmids. Nucleic Acids Res. 2021;49(7):3981–96.


    Google Scholar
     

  • Hagan M, Pankov G, Gallegos-Monterrosa R, et al. Rhs NADase effectors and their immunity proteins are exchangeable mediators of inter-bacterial competition in Serratia. Nat Commun. 2023;14(1):6061.


    Google Scholar
     

  • Huang WC, Dwija I, Hashimoto M, et al. Peptidoglycan endopeptidase MepM of uropathogenic Escherichia coli contributes to competitive fitness during urinary tract infections. BMC Microbiol. 2024;24(1):190.


    Google Scholar
     

  • Fang K, Xu Z, Yang L, et al. Biosynthesis of 10-hydroxy-2-decenoic acid through a one-step whole-cell catalysis. J Agric Food Chem. 2024;72(2):1190–202.


    Google Scholar
     

  • Baltrus DA. Exploring the costs of horizontal gene transfer. Trends Ecol Evol. 2013;28(8):489–95.


    Google Scholar
     

  • San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. Microbiol Spectr. 2017. https://doi.org/10.1128/microbiolspec.MTBP-0016-2017.

  • Prensky H, Gomez-Simmonds A, Uhlemann AC, Lopatkin AJ. Conjugation dynamics depend on both the plasmid acquisition cost and the fitness cost. Mol Syst Biol. 2021;17(3):e9913.


    Google Scholar
     

  • Wright RCT, Wood AJ, Bottery MJ, et al. A chromosomal mutation is superior to a plasmid-encoded mutation for plasmid fitness cost compensation. PLoS Biol. 2024;22(12):e3002926.


    Google Scholar
     

  • Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat. 2019;44:100640.


    Google Scholar
     

  • Koraimann G. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. EcoSal Plus. 2018. https://doi.org/10.1128/ecosalplus.esp-0003-2018.


    Google Scholar
     

  • Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and dissemination capacities of a blaNDM-5-harboring IncX-3 plasmid in Escherichia coli isolated from an urban river in Montpellier, France. Antibiotics. 2022. https://doi.org/10.3390/antibiotics11020196.


    Google Scholar
     

  • Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol. 2015;25(15):2034–9.


    Google Scholar
     

  • Hall JPJ, Wright RCT, Guymer D, Harrison E, Brockhurst MA. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Microbiology (Reading). 2020;166(1):56–62.


    Google Scholar
     

  • Hall JPJ, Wright RCT, Harrison E, et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol. 2021;19(10):e3001225.


    Google Scholar
     

  • Sekizuka T, Kawanishi M, Ohnishi M, et al. Elucidation of quantitative structural diversity of remarkable rearrangement regions, shufflons, in IncI2 plasmids. Sci Rep. 2017;7(1):928.


    Google Scholar
     

  • Brouwer MSM, Jurburg SD, Harders F, et al. The shufflon of IncI1 plasmids is rearranged constantly during different growth conditions. Plasmid. 2019;102:51–5.


    Google Scholar
     

  • Yi T, Wang Y, Shen J, Wu C, Shen Y. Discovery, structure and function of plasmid mediated shufflon. Sheng Wu Gong Cheng Xue Bao. 2023;39(1):34–44.


    Google Scholar
     

  • Komano T, Kim SR, Yoshida T, Nisioka T. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J Mol Biol. 1994;243(1):6–9.


    Google Scholar
     

  • Baharoglu Z, Babosan A, Mazel D. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase. Nucleic Acids Res. 2014;42(4):2366–79.


    Google Scholar