• IPCC: Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  • Campiglio, E. & van der Ploeg, F. Macrofinancial risks of the transition to a low-carbon economy. Rev. Environ. Econ. Policy 16, 173–195 (2022).

    Article 

    Google Scholar
     

  • Carney, M. Breaking the Tragedy of the Horizon—Climate Change and Financial Stability Speech given at Lloyd’s of London (Bank of England, 2015).

  • Scenarios in Action: A Progress Report on Global Supervisory and Central Bank Climate Scenario Exercises Technical report (Network for Greening the Financial System, 2021).

  • Stern, N. & Stiglitz, J. E. The Social Cost of Carbon, Risk, Distribution, Market Failures: An Alternative Approach Working Paper 28472 (NBER, 2021).

  • Hepburn, C., Stern, N. & Stiglitz, J. E. Carbon pricing special issue. Eur. Econ. Rev. 127, 103440 (2020).

    Article 

    Google Scholar
     

  • Patt, A. & Lilliestam, J. The case against carbon prices. Joule 2, 2494–2498 (2018).

    Article 

    Google Scholar
     

  • Rosenbloom, D., Markard, J., Geels, F. W. & Fuenfschilling, L. Opinion: why carbon pricing is not sufficient to mitigate climate change—and how “sustainability transition policy” can help. Proc. Natl Acad. Sci. USA 117, 8664–8668 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Peñasco, C., Anadón, L. D. & Verdolini, E. Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments. Nat. Clim. Change 11, 257–265 (2021).

    Article 

    Google Scholar
     

  • Goulder, L. H. et al. Instrument choice in environmental policy. Rev. Environ. Econ. Policy 2, 152–174 (2008).

    Article 

    Google Scholar
     

  • Fischer, C. & Newell, R. G. Environmental and technology policies for climate mitigation. J. Environ. Econ. Manag. 55, 142–162 (2008).

    Article 

    Google Scholar
     

  • Acemoglu, D., Aghion, P., Bursztyn, L. & Hemous, D. The environment and directed technical change. Am. Econ. Rev. 102, 131–66 (2012).

    Article 

    Google Scholar
     

  • Stiglitz, J. E. Addressing climate change through price and non-price interventions. Eur. Econ. Rev. 119, 594–612 (2019).

    Article 

    Google Scholar
     

  • Van den Bergh, J. C. J. M. et al. Designing an effective climate-policy mix: accounting for instrument synergy. Clim. Policy 21, 745–764 (2021).

    Article 

    Google Scholar
     

  • Stechemesser, A. et al. Climate policies that achieved major emission reductions: global evidence from two decades. Science 385, 884–892 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Stern, N., Stiglitz, J. & Taylor, C. The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change. J. Econ. Methodol. 29, 181–216 (2022).

    Article 

    Google Scholar
     

  • Jacoby, H. D., Chen, Y.-H. H. & Flannery, B. P. Informing transparency in the paris agreement: the role of economic models. Clim. Policy 17, 873–890 (2017).

    Article 

    Google Scholar
     

  • Lamperti, F., Dosi, G., Napoletano, M., Roventini, A. & Sapio, A. Faraway, so close: coupled climate and economic dynamics in an agent-based integrated assessment model. Ecol. Econ. 150, 315–339 (2018).

    Article 

    Google Scholar
     

  • Lamperti, F., Bosetti, V., Roventini, A. & Tavoni, M. The public costs of climate-induced financial instability. Nat. Clim. Change 9, 829–833 (2019).

    Article 

    Google Scholar
     

  • Lamperti, F., Dosi, G., Napoletano, M., Roventini, A. & Sapio, A. Climate change and green transitions in an agent-based integrated assessment model. Technol. Forecast. Soc. Change 153, 119806 (2020).

    Article 

    Google Scholar
     

  • Dosi, G. & Roventini, A. More is different… and complex! the case for agent-based macroeconomics. J. Evolut. Econ. 29, 1–37 (2019).

    Article 

    Google Scholar
     

  • Tesfatsion, L. in Handbook of Computational Economics, Vol. 2 (eds Tesfatsion, L. & Judd, K. L.) Ch. 16 (Elsevier, 2006).

  • Mercure, J.-F. et al. Risk-opportunity analysis for transformative policy design and appraisal. Glob. Environ. Change 70, 102359 (2021).

    Article 

    Google Scholar
     

  • Stern, N. & Stiglitz, J. E. Climate change and growth. Ind. Corp. Change 32, 277–303 (2023).

    Article 

    Google Scholar
     

  • Rodrik, D. Green industrial policy. Oxf. Rev. Econ. Policy 30, 469–491 (2014).

    Article 

    Google Scholar
     

  • Lamperti, F., Mazzucato, M., Roventini, A. & Semieniuk, G. The green transition: public policy, finance, and the role of the state. Q. J. Econ. Res. 88, 73–88 (2019).


    Google Scholar
     

  • IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2023).

  • Climate Scenarios for Central Banks and Supervisors—Phase IV Technical report (Network for Greening the Financial System, 2023).

  • Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • Golosov, M., Hassler, J., Krusell, P. & Tsyvinski, A. Optimal taxes on fossil fuel in general equilibrium. Econometrica 82, 41–88 (2014).

    Article 

    Google Scholar
     

  • Nordhaus, W. D. Revisiting the social cost of carbon. Proc. Natl Acad. Sci. USA 114, 1518–1523 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ackerman, F. & Heinzerling, L. Priceless. On Knowing the Price of Everything and the Value of Nothing (New Press, 2004).

  • Kanzig, D. R. The unequal economic consequences of carbon pricing. Preprint at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3786030 (2021).

  • Metcalf, G. E. & Stock, J. H. Measuring the macroeconomic impact of carbon taxes. AEA Pap. Proc. 110, 101–106 (2020).

  • Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and the energy transition. Joule 6, 2057–2082 (2022).

    Article 

    Google Scholar
     

  • Dosi, G. Sources, procedures, and microeconomic effects of innovation. J. Econ. Lit. 26, 1120–1171 (1988).


    Google Scholar
     

  • Dosi, G. & Nelson, R. R. Technical change and industrial dynamics as evolutionary processes. Handb. Econ. Innov. 1, 51–127 (2010).

    Article 

    Google Scholar
     

  • Nordhaus, W. D. An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Timilsina, G. R. Carbon taxes. J. Econ. Lit. 60, 1456–1502 (2022).

    Article 

    Google Scholar
     

  • Cimoli, M., Dosi, G. & Stiglitz, J. E. Industrial Policy and Development: The Political Economy of Capabilities Accumulation (Oxford Univ. Press, 2009).

  • Soete, L. & Freeman, C. The Economics of Industrial Innovation (Routledge, 2012).

  • Gross, D. P. & Sampat, B. N. America, jump-started: World War II R&D and the takeoff of the US innovation system. Am. Econ. Rev. 113, 3323–3356 (2023).

    Article 

    Google Scholar
     

  • Juhász, R., Lane, N. J. & Rodrik, D. The New Economics of Industrial Policy Technical report (NBER, 2023).

  • Mission Possible: Reaching Net-Zero Carbon Emissions from Harder-to-abate Sectors by Mid-Century Technical report (Energy Transitions Commission, 2018).

  • Achieving Net Zero Heavy Industry Sectors in G7 Members Technical report (International Energy Agency, 2022).

  • Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mercure, J.-F., Pollitt, H., Bassi, A. M., Viñuales, J. E. & Edwards, N. R. Modelling complex systems of heterogeneous agents to better design sustainability transitions policy. Glob. Environ. Change 37, 102–115 (2016).

    Article 

    Google Scholar
     

  • Energy Technology Perspectives 2023 Technical report (International Energy Agency, 2023).

  • Monasterolo, I., Roventini, A. & Foxon, T. J. Uncertainty of climate policies and implications for economics and finance: an evolutionary economics approach. Ecol. Econ. 163, 177–182 (2019).

    Article 

    Google Scholar
     

  • Schmidt, T. S., Schneider, M., Rogge, K. S., Schuetz, M. J. A. & Hoffmann, V. H. The effects of climate policy on the rate and direction of innovation: a survey of the EU ETS and the electricity sector. Environ. Innov. Soc. Transit. 2, 23–48 (2012).

    Article 

    Google Scholar
     

  • Mazzucato, M. & Semieniuk, G. Financing renewable energy: who is financing what and why it matters. Technol. Forecast. Soc. Change 127, 8–22 (2018).

    Article 

    Google Scholar
     

  • Mercure, J.-F. et al. Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strat. Rev. 20, 195–208 (2018).

    Article 

    Google Scholar
     

  • Vogt-Schilb, A., Meunier, G. & Hallegatte, S. When starting with the most expensive option makes sense: optimal timing, cost and sectoral allocation of abatement investment. J. Environ. Econ. Manag. 88, 210–233 (2018).

    Article 

    Google Scholar
     

  • Stokes, L. C. Short Circuiting Policy: Interest Groups and the Battle Over Clean Energy and Climate Policy in the American States (Oxford Univ. Press, 2020).

  • Lackner, T., Fierro, L. E. & Mellacher, P. Opinion dynamics meet agent-based climate economics: an integrated analysis of carbon taxation. J. Econ. Behav. Organ. 229, 106816 (2025).

    Article 

    Google Scholar
     

  • Reissl, S., Fierro, L. E., Lamperti, F. & Roventini, A. The DSK stock-flow consistent agent-based integrated assessment model. Ecol. Econ. 236, 108641 (2025).

    Article 

    Google Scholar
     

  • Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A. & Treibich, T. Fiscal and monetary policies in complex evolving economies. J. Econ. Dyn. Control 52, 166–189 (2015).

    Article 

    Google Scholar
     

  • Balint, T. et al. Complexity and the economics of climate change: a survey and a look forward. Ecol. Econ. 138, 252–265 (2017).

    Article 

    Google Scholar
     

  • Dawid, H. & Gatti, D. D. in Handbook of Computational Economics Vol. 4 (eds Hommes, C. & LeBaron, B.) Ch. 2 (Elsevier, 2018).

  • Farmer, J. D. & Foley, D. The economy needs agent-based modelling. Nature 460, 685 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Martinoli, M., Moneta, A. & Pallante, G. Calibration and validation of macroeconomic simulation models by statistical causal search. J. Econ. Behav. Organ. 228, 106786 (2024).

    Article 

    Google Scholar
     

  • Fagiolo, G., Guerini, M., Lamperti, F., Moneta, A. & Roventini, A. in Computer Simulation Validation (eds Beisbart, C. & Saam, N. J.) Ch. 31 (Springer, 2019).

  • Manufacturing Energy Consumption Survey (US Energy Information Administration, 2018).

  • Dosi, G., Fagiolo, G. & Roventini, A. Schumpeter meeting Keynes: a policy-friendly model of endogenous growth and business cycles. J. Econ. Dyn. Control 34, 1748–1767 (2010).

    Article 

    Google Scholar
     

  • Nelson, R. & Winter, S. An Evolutionary Theory of Economic Change (Harvard Univ. Press, 1982).

  • Lamperti, F., Napoletano, M. & Roventini, A. Green transitions and the prevention of environmental disasters: market-based vs. command-and-control policies. Macroecon. Dyn. 24, 1861–1880 (2020).

    Article 

    Google Scholar
     

  • Gunningham, N. Enforcing environmental regulation. J. Environ. Law 23, 169–201 (2011).

    Article 

    Google Scholar
     

  • Cozzi, L., Frankl, P., Wanner, B., Bahar, H. & Spencer, T. Tripling Renewable Power Capacity by 2030 Is Vital to Keep the 1.5°C Goal Within Reach Technical report (International Energy Agency, 2023).