• Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017).

    Article 

    Google Scholar
     

  • Jacobson, M. Z. et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 1, 108–121 (2017).

    Article 

    Google Scholar
     

  • Luderer, G. et al. Assessment of wind and solar power in global low-carbon energy scenarios: an introduction. Energy Econ. 64, 542–551 (2017).

    Article 

    Google Scholar
     

  • Dale, S. (analysis). BP Statistical Review of World Energy 2021. BP p.l.c. (2021). Available at: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf?.

  • Haegel, N. M. et al. Terawatt-scale photovoltaics: transform global energy. Science 364, 836–838 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article 

    Google Scholar
     

  • MacKay, D. J. C. Solar energy in the context of energy use, energy transportation and energy storage. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20110431 (2013).


    Google Scholar
     

  • Smil, V. Power Density Primer: Understanding the Spatial Dimension of the Unfolding Transition to Renewable Electricity Generation (Part I – Definitions) (2010). Available at: https://moodle2.units.it/pluginfile.php/553999/mod_folder/content/0/smil-article-power-density-primer.pdf?.

  • Turney, D. & Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 15, 3261–3270 (2011).

    Article 

    Google Scholar
     

  • Jordaan, S. M., Lee, J., McClung, M. R. & Moran, M. D. Quantifying the ecosystem services values of electricity generation in the US Chihuahuan Desert: a life cycle perspective. J. Ind. Ecol. 25, 1089–1101 (2021).

    Article 

    Google Scholar
     

  • Fthenakis, V. & Kim, H. C. Land use and electricity generation: a life-cycle analysis. Renew. Sustain. Energy Rev. 13, 1465–1474 (2009).

    Article 

    Google Scholar
     

  • Bukhary, S., Ahmad, S. & Batista, J. Analyzing land and water requirements for solar deployment in the Southwestern United States. Renew. Sustain. Energy Rev. 82, 3288–3305 (2018).

    Article 

    Google Scholar
     

  • Capellán-Pérez, I., de Castro, C. & Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 77, 760–782 (2017).

    Article 

    Google Scholar
     

  • Hernandez, R. R., Hoffacker, M. K. & Field, C. B. Land-use efficiency of big solar. Environ. Sci. Technol. 48, 1315–1323 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Majumdar, D. & Pasqualetti, M. J. Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA. Renew. Energy 134, 1213–1231 (2019).

    Article 

    Google Scholar
     

  • Mauro, G. & Lughi, V. Mapping land use impact of photovoltaic farms via crowdsourcing in the Province of Lecce (Southeastern Italy). Sol. Energy 155, 434–444 (2017).

    Article 

    Google Scholar
     

  • Wu, X. et al. Unveiling land footprint of solar power: a pilot solar tower project in China. J. Environ. Manag. 280, 111741 (2021).

    Article 

    Google Scholar
     

  • Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Aligning climate change and sustainable development goals with an innovation systems roadmap for renewable power. Front. Sustain. 1, 583090 (2020).

    Article 

    Google Scholar
     

  • Hernandez, R. R., Cagle, A. E., Grodsky, S. M., Exley, G. & Jordaan, S. M. Comments on: Land use for United States power generation: a critical review of existing metrics with suggestions for going forward (Renewable and Sustainable Energy Reviews 2021; 143: 110911). Renew. Sustain. Energy Rev. 166, 112526 (2022).

    Article 

    Google Scholar
     

  • Wachs, E. & Engel, B. Land use for United States power generation: a critical review of existing metrics with suggestions for going forward. Renew. Sustain. Energy Rev. 143, 110911 (2021).

    Article 

    Google Scholar
     

  • Cagle, A. E. et al. Standardized metrics to quantify solar energy-land relationships: a global systematic review. Front. Sustain. 3, 1035705 (2023).

    Article 

    Google Scholar
     

  • Fritsche, U. et al. Energy and Land Use – Global Land Outlook Working Paper (UNCCD, 2017). https://doi.org/10.13140/RG.2.2.24905.44648.

  • IINAS. Selected Results from GEMIS 4.95: Electricity Generation (IINAS, 2017).

  • Trainor, A. M., McDonald, R. I. & Fargione, J. Energy sprawl is the largest driver of land use change in United States. PLOS ONE 11, e0162269 (2016).

    Article 

    Google Scholar
     

  • Groesbeck, J. G. & Pearce, J. M. Coal with carbon capture and sequestration is not as land use efficient as solar photovoltaic technology for climate neutral electricity production. Sci. Rep. 8, 13476 (2018).

    Article 

    Google Scholar
     

  • Jordaan, S. M. The land use footprint of energy extraction in Alberta. PhD thesis, University of Calgary (2010) https://doi.org/10.11575/PRISM/3520.

  • Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-Use Requirements for Solar Power Plants in the United States. NREL/TP-6A20-56290, 1086349, https://doi.org/10.2172/1086349 (2013).

  • Jordaan, S. M. et al. Understanding the life cycle surface land requirements of natural gas-fired electricity. Nat. Energy 2, 804–812 (2017).

    Article 

    Google Scholar
     

  • Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carr, N. B., Fancher, T., Freeman, A. T. & Battles Manley, H. Surface area of solar arrays in the conterminous United States. U.S. Geological Survey data release (2016). Available at: https://doi.org/10.5066/F79S1P57.

  • Fujita K. S. et al. United States Large-Scale Solar Photovoltaic Database (ver. 2.0, August 2024). U.S. Geological Survey https://doi.org/10.5066/P9IA3TUS (2024).

  • Bolinger, M. & Bolinger, G. Land requirements for utility-scale PV: an empirical update on power and energy density. IEEE J. Photovolt. 12, 589–594 (2022).

    Article 

    Google Scholar
     

  • Yu, J., Wang, Z., Majumdar, A. & Rajagopal, R. DeepSolar: a machine learning framework to efficiently construct a solar deployment database in the United States. Joule 2, 2605–2617 (2018).

    Article 

    Google Scholar
     

  • Wang, Z., Arlt, M.-L., Zanocco, C., Majumdar, A. & Rajagopal, R. DeepSolar++: understanding residential solar adoption trajectories with computer vision and technology diffusion models. Joule 6, 2611–2625 (2022).

    Article 

    Google Scholar
     

  • Malof, J. M., Bradbury, K., Collins, L. M. & Newell, R. G. Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Appl. Energy 183, 229–240 (2016).

    Article 

    Google Scholar
     

  • Hou, X. et al. SolarNet: a deep learning framework to map solar plants in China from satellite imagery. In ICLR 2020 Workshop Tackling Clim. Change Mach. Learn (ICLR, 2020).

  • Camilo, J., Wang, R., Collins, L. M., Bradbury, K. & Malof, J. M. Application of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery. Preprint at https://doi.org/10.48550/ARXIV.1801.04018 (2018).

  • IEA. Renewables 2019. https://www.iea.org/reports/renewables-2019 (2019).

  • Hoffacker, M. K., Allen, M. F. & Hernandez, R. R. Land-sparing opportunities for solar energy development in agricultural landscapes: a case study of the Great Central Valley, CA, United States. Environ. Sci. Technol. 51, 14472–14482 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cagle, A. E. et al. The land sparing, water surface use efficiency, and water surface transformation of floating photovoltaic solar energy installations. Sustainability 12, 8154 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Maguire, K., Tanner, S. J., Winikoff, J. B., Williams, R., & United States. Department of Agriculture. Economic Research Service. Utility-Scale Solar and Wind Development in Rural Areas: Land Cover Change (2009-20). https://handle.nal.usda.gov/10113/8374829https://doi.org/10.32747/2024.8374829.ers (2024).

  • Leccisi, E., Raugei, M. & Fthenakis, V. The energy and environmental performance of ground-mounted photovoltaic systems—a timely update. Energies 9, 622 (2016).

    Article 

    Google Scholar
     

  • Kurnik, J., Jankovec, M., Brecl, K. & Topic, M. Outdoor testing of PV module temperature and performance under different mounting and operational conditions. Sol. Energy Mater. Sol. Cells 95, 373–376 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jensen, A. R., Sifnaios, I., Furbo, S. & Dragsted, J. Self-shading of two-axis tracking solar collectors: impact of field layout, latitude, and aperture shape. Sol. Energy 236, 215–224 (2022).

    Article 

    Google Scholar
     

  • Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560–568 (2019).

    Article 

    Google Scholar
     

  • Stowell, D. et al. A harmonised, high-coverage, open dataset of solar photovoltaic installations in the UK. Sci. Data 7, 394 (2020).

    Article 

    Google Scholar
     

  • Dunnett, S., Sorichetta, A., Taylor, G. & Eigenbrod, F. Harmonised global datasets of wind and solar farm locations and power. Sci. Data 7, 130 (2020).

    Article 

    Google Scholar
     

  • Turkovska, O. et al. Methodological and reporting inconsistencies in land-use requirements misguide future renewable energy planning. One Earth 7, 1741–1759 (2024).

    Article 

    Google Scholar
     

  • Jordaan, S. M., Combs, C. & Guenther, E. Life cycle assessment of electricity generation: a systematic review of spatiotemporal methods. Adv. Appl. Energy 3, 100058 (2021).

    Article 

    Google Scholar
     

  • Lovering, J., Swain, M., Blomqvist, L. & Hernandez, R. R. Land-use intensity of electricity production and tomorrow’s energy landscape. PLOS ONE 17, e0270155 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Daniela-Abigail, H.-L. et al. Life cycle assessment of photovoltaic panels including transportation and two end-of-life scenarios: Shaping a sustainable future for renewable energy. Renew. Energy Focus 51, 100649 (2024).

    Article 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds, Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 9351 234–241 (Springer International Publishing, 2015).

  • Dai, T. et al. Land resources for wind energy development requires regionalized characterizations. Environ. Sci. Technol. 58, 5014–5023 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Koellner, T. & Scholz, R. W. Assessment of land use impacts on the natural environment: Part 2: generic characterization factors for local species diversity in Central Europe. Int. J. Life Cycle Assess. 13, 32–48 (2008).


    Google Scholar
     

  • Koellner, T. et al. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 18, 1188–1202 (2013).

    Article 

    Google Scholar
     

  • De Baan, L., Alkemade, R. & Koellner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assess. 18, 1216–1230 (2013).

    Article 

    Google Scholar