• Galego, J., Garcia-Vidal, F. J. & Feist, J. Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys. Rev. X 5, 041022 (2015).


    Google Scholar
     

  • Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 91, 025005 (2019).

    Article 

    Google Scholar
     

  • Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Nagarajan, K., Thomas, A. & Ebbesen, T. W. Chemistry under vibrational strong coupling. J. Am. Chem. Soc. 143, 16877–16889 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, B. & Xiong, W. Molecular polaritons for chemistry, photonics and quantum technologies. Chem. Rev. 124, 2512–2552 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article 

    Google Scholar
     

  • Baranov, D. G. et al. Ultrastrong coupling between nanoparticle plasmons and cavity photons at ambient conditions. Nat. Commun. 11, 2715 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stassi, R. et al. Quantum nonlinear optics without photons. Phys. Rev. A 96, 023818 (2017).

    Article 

    Google Scholar
     

  • Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stassi, R. & Nori, F. Long-lasting quantum memories: extending the coherence time of superconducting artificial atoms in the ultrastrong-coupling regime. Phys. Rev. A 97, 033823 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ruggenthaler, M., Tancogne-Dejean, N., Flick, J., Appel, H. & Rubio, A. From a quantum-electrodynamical light–matter description to novel spectroscopies. Nat. Rev. Chem. 2, 0118 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vergauwe, R. M. A. et al. Modification of enzyme activity by vibrational strong coupling of water. Angew. Chem. Int. Ed. 58, 15324–15328 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).

    CAS 

    Google Scholar
     

  • Autore, M. et al. Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light Sci. Appl. 7, 17172 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menghrajani, K. S., Nash, G. R. & Barnes, W. L. Vibrational strong coupling with surface plasmons and the presence of surface plasmon stop bands. ACS Photon. 6, 2110–2116 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dayal, G., Morichika, I. & Ashihara, S. Vibrational strong coupling in subwavelength nanogap patch antenna at the single resonator level. J. Phys. Chem. Lett. 12, 3171–3175 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Autore, M. et al. Enhanced light–matter interaction in 10B monoisotopic boron nitride infrared nanoresonators. Adv. Optical Mater. 9, 2001958 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, D. et al. Ultrastrong plasmon–phonon coupling via epsilon-near-zero nanocavities. Nat. Photon. 15, 125–130 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bylinkin, A. et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat. Photon. 15, 197–202 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, K. et al. Vibrational strong coupling between surface phonon polaritons and organic molecules via single quartz micropillars. Adv. Mater. 34, 2109088 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dolado, I. et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat. Commun. 13, 6850 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, E. A. et al. Nanoimaging and control of molecular vibrations through electromagnetically induced scattering reaching the strong coupling regime. ACS Photon. 5, 3594–3600 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hirschmann, O., Bhakta, H. H., Kort-Kamp, W. J. M., Jones, A. C. & Xiong, W. Spatially resolved near field spectroscopy of vibrational polaritons at the small N limit. ACS Photon. 11, 2650–2658 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ni, G. X. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wehmeier, L. et al. Landau-phonon polaritons in Dirac heterostructures. Sci. Adv. 10, eadp3487 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, M. et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy. Nano Lett. 14, 4529–4534 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Knoll, B. & Keilmann, F. Infrared conductivity mapping for nanoelectronics. Appl. Phys. Lett. 77, 3980–3982 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stiegler, J. M. et al. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10, 1387–1392 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, M. et al. Polariton design and modulation via van der Waals/doped semiconductor heterostructures. Nat. Commun. 14, 7965 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillenbrand, R., Abate, Y., Liu, M., Chen, X. & Basov, D. N. Visible-to-THz near-field nanoscopy. Nat. Rev. Mater. 10, 285–310 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Xu, R. et al. Highly confined epsilon-near-zero and surface phonon polaritons in SrTiO3 membranes. Nat. Commun. 15, 4743 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwennicke, K., Giebink, N. C. & Yuen-Zhou, J. Extracting accurate light–matter couplings from disordered polaritons. Nanophotonics 13, 2469–2478 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancini, A. et al. Near-field retrieval of the surface phonon polariton dispersion in free-standing silicon carbide thin films. ACS Photon. 9, 3696–3704 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passler, N. C. et al. Strong coupling of epsilon-near-zero phonon polaritons in polar dielectric heterostructures. Nano Lett. 18, 4285–4292 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauer, B., Engelhardt, A. P. & Taubner, T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Express 20, 13173–13188 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Huber, M. A. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat. Nanotechnol. 12, 207–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat. Commun. 13, 1374 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat. Mater. 22, 860–866 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Barra-Burillo, M. et al. Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime. Nat. Commun. 12, 6206 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muniain, U., Aizpurua, J., Hillenbrand, R., Martín-Moreno, L. & Esteban, R. Description of ultrastrong light–matter interaction through coupled harmonic oscillator models and their connection with cavity-QED Hamiltonians. Nanophotonics 14, 2031–2052 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M., Bundesmann, C., Jacopic, G., Maresch, H. & Arwin, H. Infrared dielectric function and vibrational modes of pentacene thin films. Appl. Phys. Lett. 84, 200–202 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Bryxin, V. V., Mirlin, D. N. & Reshina, I. I. Surface plasmon-phonon interaction in n-InSb. Solid State Commun. 11, 695–699 (1972).

    Article 

    Google Scholar
     

  • Dunkelberger, A. D. et al. Active tuning of surface phonon polariton resonances via carrier photoinjection. Nat. Photon. 12, 50–56 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hagenmüller, D., Schachenmayer, J., Genet, C., Ebbesen, T. W. & Pupillo, G. Enhancement of the electron–phonon scattering induced by intrinsic surface plasmon–phonon polaritons. ACS Photon. 6, 1073–1081 (2019).

    Article 

    Google Scholar
     

  • Deutsch, B., Hillenbrand, R. & Novotny, L. Near-field amplitude and phase recovery using phase-shifting interferometry. Opt. Express 16, 494–501 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lorimor, O. G. & Spitzer, W. G. Infrared refractive index and absorption of InAs and CdTe. J. Appl. Phys. 36, 1841–1844 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Esteban, R., Aizpurua, J. & Bryant, G. W. Strong coupling of single emitters interacting with phononic infrared antennae. New J. Phys. 16, 013052 (2014).

    Article 

    Google Scholar
     

  • Vicentini, E. Real-space observation of flat-band ultrastrong coupling between optical phonons and surface plasmon polaritons. Zenodo https://doi.org/10.5281/zenodo.17233543 (2025).