• Hasheminezhad, A., King, D., Ceylan, H. & Kim, S. Comparative life cycle assessment of natural and recycled aggregate concrete: a review. Sci. Total. Env. 950, 175310 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Peduzzi, P. et al. Sand and sustainability: 10 strategic recommendations to avert a crisis. UN Environment Programme https://www.unep.org/resources/report/sand-and-sustainability-10-strategic-recommendations-avert-crisis (2022).

  • A. Laguna & P. Peduzzi. Our use of sand brings us “up against the wall”, says UNEP report. UN Environment Programme https://www.unep.org/news-and-stories/press-release/our-use-sand-brings-us-against-wall-says-unep-report?utm_source=chatgpt.com&__cf_chl_tk=hSmS7_LuT.njPO_2RFgvDbgac4FEIHst2E831KHSkJU-1755650785-1.0.1.1-RQmgNOLgl.28mgP.dUZ_.FxnjynA.LwiFhqyPX82qz0 (2022).

  • Ministry of Natural Resources of the People’s Republic of China. Notice of the Ministry of Natural Resources on Standardizing and Improving the Management of Sand and Gravel Mining [Chinese]. https://gi.mnr.gov.cn/202304/t20230419_2782795.html (2023).

  • de Andrade Salgado, F. & de Andrade Silva, F. Recycled aggregates from construction and demolition waste towards an application on structural concrete: a review. J. Build. Eng. 52, 104452 (2022).

    Article 

    Google Scholar
     

  • Wang, B., Yan, L., Fu, Q. & Kasal, B. A comprehensive review on recycled aggregate and recycled aggregate concrete. Resour. Conserv. Recycl. 171, 105565 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ghisellini, P., Ripa, M. & Ulgiati, S. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 178, 618–643 (2018).

    Article 

    Google Scholar
     

  • Fraj, A. B. & Idir, R. Concrete based on recycled aggregates—recycling and environmental analysis: a case study of Paris’ region. Constr. Build. Mater. 157, 952–964 (2017).

    Article 

    Google Scholar
     

  • Xing, W., Tam, V. W. Y., Le, K. N., Hao, J. L. & Wang, J. Life cycle assessment of recycled aggregate concrete on its environmental impacts: a critical review. Constr. Build. Mater. 317, 125950 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, X., Wan-Wendner, L., Molkens, T. & Gruyaert, E. A review on mesoscale modeling of recycled aggregate concrete—advances, challenges, and perspectives. J. Build. Eng. 114, 114272 (2025).

    Article 

    Google Scholar
     

  • Duan, Z. et al. Building demolition and solid waste recycling technologies: prospects and paths [Chinese]. Strategic Study CAE 27, 1–12 (2025).


    Google Scholar
     

  • Ambrós, W. M., Cazacliu, B. G. & Sampaio, C. H. Wall effects on particle separation in air jigs. Powder Technol. 301, 369–378 (2016).

    Article 

    Google Scholar
     

  • Jankovic, K., Nikolic, D. & Bojovic, D. Concrete paving blocks and flags made with crushed brick as aggregate. Constr. Build. Mater. 28, 659–663 (2012).

    Article 

    Google Scholar
     

  • Mora, C. F., Kwan, A. K. H. & Chan, H. C. Particle size distribution analysis of coarse aggregate using digital image processing. Cem. Concr. Res. 28, 921–932 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hu, K., Chen, Y., Naz, F., Zeng, C. & Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manage. 85, 396–404 (2019).

    Article 

    Google Scholar
     

  • Di Maria, F., Bianconi, F., Micale, C., Baglioni, S. & Marionni, M. Quality assessment for recycling aggregates from construction and demolition waste: an image-based approach for particle size estimation. Waste Manage. 48, 344–352 (2016).

    Article 

    Google Scholar
     

  • Anding, K., Garten, D. & Linß, E. Application of intelligent image processing in the construction material industry. Waste Manage. https://doi.org/10.21014/acta_imeko.v2i1.100 (2013).

    Article 

    Google Scholar
     

  • Xiao, J. et al. Principles for waste concrete recycling and basic problems of recycled concrete [Chinese]. Chin. Sci. Bull. 68, 510–523 (2022).

    Article 

    Google Scholar
     

  • Neupane, R. P., Devi, N. R., Imjai, T., Rajput, A. & Noguchi, T. Cutting-edge techniques and environmental insights in recycled concrete aggregate production: a comprehensive review. Resour. Conserv. Recycl. Adv. 25, 200241 (2025).


    Google Scholar
     

  • Wang, X., Li, N., Du, J. & Wang, W. Concrete crushing based on the high-voltage pulse discharge technology. J. Build. Eng. 41, 102366 (2021).

    Article 

    Google Scholar
     

  • Wang, D. Research and Application of High-efficiency Screening and Grading Equipment [Chinese]. Master thesis, Kunming Univ. Science and Technology (2023).

  • Wang, W. & Du, H. An intelligent screening and processing device for construction waste [Chinese]. China Patent ZL202211416519.9 (2022).

  • Kim, J. Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: an overview. Constr. Build. Mater. 328, 127071 (2022).

    Article 

    Google Scholar
     

  • Yang, X. et al. Straightening methods for RCA and RAC—a review. Cem. Concr. Comp. 141, 105145 (2023).

    Article 
    CAS 

    Google Scholar
     

  • de Juan, M. S. & Gutiérrez, P. A. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr. Build. Mater. 23, 872–877 (2009).

    Article 

    Google Scholar
     

  • Duan, Z. & Poon, C. S. Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Mater. Des. 58, 19–29 (2014).

    Article 

    Google Scholar
     

  • Ouyang, K. et al. Influence of pre-treatment methods for recycled concrete aggregate on the performance of recycled concrete: a review. Resour. Conserv. Recyc. 188, 106717 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. H., Sung, J. H., Jeon, C. S., Lee, S. H. & Kim, H. S. A study on the properties of recycled aggregate concrete and its production facilities. Appl. Sci. 9, 1935 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W., Shao, Z., Wei, W., Zhang, P. & Hong, Y. Properties of concrete incorporating microwave treated coarse aggregate: an experimental study. Structures 33, 693–702 (2021).

    Article 

    Google Scholar
     

  • Yoon, H. S., Seo, E. A., Kim, D. G. & Yang, K. H. Efficiency of dry calcination and trituration treatments for removing cement pastes attached to recycled coarse aggregates. Constr. Build. Mater. 312, 125412 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Feng, C. et al. Research progress on treatment methods of building recycled concrete aggregates [Chinese]. Mater. Rep. 36, 20080099 (2022).


    Google Scholar
     

  • Akbarnezhad, A., Ong, K. C. G., Zhang, M. H., Tam, C. T. & Foo, T. W. J. Microwave-assisted beneficiation of recycled concrete aggregates. Constr. Build. Mater. 25, 3469–3479 (2011).

    Article 

    Google Scholar
     

  • Shima, H., Tateyashiki, H., Matsuhashi, R. & Yoshida, Y. An advanced concrete recycling technology and its applicability assessment through input–output analysis. J. Adv. Concr. Technol. 3, 53–67 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. S., Kim, B., Kim, K. S. & Kim, J. M. Quality improvement of recycled aggregates using the acid treatment method and the strength characteristics of the resulting mortar. J. Mater. Cycles Waste Manage. 19, 968–976 (2016).

    Article 

    Google Scholar
     

  • Pan, Z. et al. The hydration, pore structure and strength of cement-based material prepared with waste soaking solution from acetic acid treatment of regenerated aggregates. J. Clean. Prod. 235, 866–874 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Thaue, W., Iwanami, M., Nakayama, K. & Yodsudjai, W. Influence of acetic acid treatment on microstructure of interfacial transition zone and performance of recycled aggregate concrete. Constr. Build. Mater. 417, 135355 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Experimental and numerical investigation on the microstructure and failure characteristics of concrete using strengthened recycled coarse aggregate. J. Build. Eng. 66, 105880 (2023).

    Article 

    Google Scholar
     

  • Zhu, Y., Kou, S., Poon, C. S., Dai, J. & Li, Q. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem. Concr. Compos. 35, 32–38 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lu, D., Wang, D., Wang, Y. & Zhong, J. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide. Constr. Build. Mater. 384, 131244 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Han, Y. et al. Chloride ion penetration resistance of matrix and interfacial transition zone of multi-walled carbon nanotube-reinforced concrete. J. Build. Eng. 72, 106587 (2023).

    Article 

    Google Scholar
     

  • Silva, R. V., Neves, R., de Brito, J. & Dhir, R. K. Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Comp. 62, 22–32 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sequeira, L., Forero, J., Bravo, M., Evangelista, L. & de Brito, J. Durability of concrete with partial replacement of Portland cement by incorporating reactive magnesium oxide and fly ash. Materials 16, 2670 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J., Jiang, Y., Wang, D., Noguchi, T. & Lu, Z. Global CO2 sequestration potential of recycled aggregates: modeling, life cycle analysis, and accelerated carbonation strategies. Waste Manag. 204, 114951 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Liang, C., Lu, N., Ma, H., Ma, Z. & Duan, Z. Carbonation behavior of recycled concrete with CO2-curing recycled aggregate under various environments. J. CO2 Util. 39, 101185 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Durability of concrete containing carbonated recycled aggregates: a comprehensive review. Cem. Concr. Comp. 156, 105865 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Shuvo, A. K., Sarker, P. K. & Shaikh, F. U. A. Efficacy of various accelerated carbonation techniques to improve recycled concrete aggregates: a comprehensive review. J. Build. Eng. 95, 110257 (2024).

    Article 

    Google Scholar
     

  • Feng, R. & Xian, X. A review for accelerated carbonation improvement of recycled concrete coarse aggregates and the meta-analysis of environmental benefit assessment and cost analysis of concrete so produced. J. Build. Eng. 106, 112649 (2025).

    Article 

    Google Scholar
     

  • Kong, D. et al. Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Constr. Build. Mater. 24, 701–708 (2010).

    Article 

    Google Scholar
     

  • Katz, A. Treatments for the improvement of recycled aggregate. J. Mater. Civ. Eng. 16, 597–603 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Shaban, W. M. et al. Effect of pozzolan slurries on recycled aggregate concrete: mechanical and durability performance. Constr. Build. Mater. 276, 121940 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, C., Wu, Z., Cao, Z., Ling, T. C. & Zheng, J. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cem. Concr. Comp. 86, 130–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xuan, D., Zhan, B. & Poon, C. S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem. Concr. Comp. 65, 67–74 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ying, J., Zhou, B. & Xiao, J. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr. Build. Mater. 150, 49–55 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Diamond, S., Sahu, S. & Thaulow, N. Reaction products of densified silica fume agglomerates in concrete. Cem. Concr. Res. 34, 1625–1632 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Singh, L. P., Bisht, V., Aswathy, M. S., Chaurasia, L. & Gupta, S. Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Constr. Build. Mater. 181, 217–226 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z., Chin, C. S. & Xia, J. Improving recycled coarse aggregate (RCA) and recycled coarse aggregate concrete (RCAC) by biological denitrification phenomenon. Constr. Build. Mater. 301, 124338 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Muynck, W., De Belie, N. & Verstraete, W. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36, 118–136 (2010).

    Article 

    Google Scholar
     

  • Liu, K., Zheng, J., Xie, W., Dong, S. & Duan, Z. Mixture design method of recycled aggregate concrete based on machine learning [Chinese]. J. Hunan Univ. 50, 88–96 (2023).

    CAS 

    Google Scholar
     

  • Yao, Y. & Hong, B. Evolution of recycled concrete research: a data-driven scientometric review. Low-carbon Mater. Green. Constr. https://doi.org/10.1007/s44242-024-00047-5 (2024).

    Article 

    Google Scholar
     

  • Xiao, J. Recycled Aggregate Concrete Structures (Springer, 2018).

  • Meng, D., Wu, X., Quan, H. & Zhu, C. A strength-based mix design method for recycled aggregate concrete and consequent durability performance. Constr. Build. Mater. 281, 122616 (2021).

    Article 

    Google Scholar
     

  • Deng, F. et al. Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 175, 562–569 (2018).

    Article 

    Google Scholar
     

  • Khademi, F., Jamal, S. M., Deshpande, N. & Londhe, S. Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. Int. J. Sustain. Built Environ. 5, 355–369 (2016).

    Article 

    Google Scholar
     

  • Zhang, B. et al. Sustainable mix design and carbon emission analysis of recycled aggregate concrete based on machine learning and big data methods. J. Clean. Prod. 489, 144734 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Biswal, U. S., Mishra, M., Singh, M. K. & Pasla, D. Experimental investigation and comparative machine learning prediction of the compressive strength of recycled aggregate concrete incorporated with fly ash, GGBS, and metakaolin. Innovative Infrastruct. Solut. 7, 1–20 (2022).

    Article 

    Google Scholar
     

  • Erdem, S., Dawson, A. R. & Thom, N. H. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates. Cem. Concr. Res. 42, 447–458 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. & Zhao, Y. Integrated interface parameters of recycled aggregate concrete. Constr. Build. Mater. 101, 861–877 (2015).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Mechanical behavior of ultra-high performance concrete (UHPC) using recycled fine aggregate cured under different conditions and the mechanism based on integrated microstructural parameters. Constr. Build. Mater. 192, 489–507 (2018).

    Article 

    Google Scholar
     

  • Zhao, H. & Zhou, A. Effects of recycled aggregates on mechanical and fractural properties of concrete: Insights from DEM modelling. Compos. Part. A-Appl. S 186, 108395 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Q., Zhang, J., Wang, Z., Zhao, T. & Wang, Z. A review of the interfacial transition zones in concrete: identification, physical characteristics, and mechanical properties. Eng. Fract. Mech. 300, 109979 (2024).

    Article 

    Google Scholar
     

  • Wu, K., Han, H., Xu, L., Yang, X. & De Schutter, G. Supported ITZ modification efficiencies via surface coating nanoparticles on aggregate and its influence on properties. Materials 12, 3541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wu, K., Shi, H., Xu, L., Ye, G. & De Schutter, G. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cem. Concr. Res. 79, 243–256 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R., Mo, K. & Ling, T. Offsetting strength loss in concrete via ITZ enhancement: from the perspective of utilizing new alternative aggregate. Cem. Concr. Comp. 127, 104385 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Branch, J. L., Epps, R. & Kosson, D. S. The impact of carbonation on bulk and ITZ porosity in microconcrete materials with fly ash replacement. Cem. Concr. Res. 103, 170–178 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ollivier, J. P., Maso, J. C. & Bourdette, B. Interfacial transition zone in concrete. Adv. Cem. Based Mater. 2, 30–38 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. A new model for investigating the formation of interfacial transition zone in cement-based materials. Cem. Concr. Res. 187, 107675 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Fang, G. & Zhang, M. The evolution of interfacial transition zone in alkali-activated fly ash–slag concrete. Cem. Concr. Res. 129, 105963 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Scrivener, K. L., Crumbie, A. K. & Laugesen, P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface Sci. 12, 411–421 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y., Hu, X., Shi, C. & Wu, M. Review on the formation and improvement of interfacial transition zone between cement paste and aggregate in concrete [Chinese]. Mater. Rep. 37, 21050009 (2023).


    Google Scholar
     

  • Carrara, P. & De Lorenzis, L. Consistent identification of the interfacial transition zone in simulated cement microstructures. Cem. Concr. Comp. 80, 224–234 (2017).

    Article 
    CAS 

    Google Scholar
     

  • He, J., Lei, D. & Xu, W. In-situ measurement of nominal compressive elastic modulus of interfacial transition zone in concrete by SEM–DIC coupled method. Cem. Concr. Comp. 114, 103779 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hashin, Z. & Monteiro, P. J. M. An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cem. Concr. Res. 32, 1291–1300 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J., Li, W., Sun, Z., Lange, D. A. & Shah, S. P. Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem. Concr. Comp. 37, 276–292 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Karen, L. & Scrivener, K. M. N. The percolation of pore space in the cement paste/aggregate interfacial zone of concrete. Cem. Concr. Res. 26, 35–40 (1996).

    Article 

    Google Scholar
     

  • Shen, Q., Pan, G. & Zhan, H. Effect of interfacial transition zone on the carbonation of cement-based materials. J. Mater. Civ. Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0001860 (2017).

    Article 

    Google Scholar
     

  • Huang, K.-S. & Yang, C.-C. Determination of the chloride migration coefficient for interfacial transition zone in cement-based material with fly ash replacement. Cem. Concr. Comp. 130, 104558 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cwirzen, A. & Penttala, V. Aggregate–cement paste transition zone properties affecting the salt–frost damage of high-performance concretes. Cem. Concr. Res. 35, 671–679 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S., Qi, L., He, R., Wu, J. & Wang, Z. Erosion damage and expansion evolution of interfacial transition zone in concrete under dry–wet cycles and sulfate erosion. Constr. Build. Mater. 307, 124954 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pradhan, S., Kumar, S. & Barai, S. V. Multi-scale characterisation of recycled aggregate concrete and prediction of its performance. Cem. Concr. Comp. 106, 103480 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Influence of recycled concrete aggregate enhancement methods on the change of microstructure of ITZs in recycled aggregate concrete. Constr. Build. Mater. 371, 130772 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, G. C. & Choi, H. B. Study on interfacial transition zone properties of recycled aggregate by micro-hardness test. Constr. Build. Mater. 40, 455–460 (2013).

    Article 

    Google Scholar
     

  • Gebremariam, H. G., Taye, S. & Tarekegn, A. G. Disparity in research findings on parent concrete strength effects on recycled aggregate quality as a challenge in aggregate recycling. Case Stud. Constr. Mat. 19, e02342 (2023).


    Google Scholar
     

  • Rossignolo, J. A. Interfacial interactions in concretes with silica fume and SBR latex. Constr. Build. Mater. 23, 817–821 (2009).

    Article 

    Google Scholar
     

  • Gao, Y. et al. Characterization of ITZ in ternary blended cementitious composites: experiment and simulation. Constr. Build. Mater. 41, 742–750 (2013).

    Article 

    Google Scholar
     

  • Butler, L., West, J. S. & Tighe, S. L. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement. Cem. Concr. Res. 41, 1037–1049 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wagih, A. M., El-Karmoty, H. Z., Ebid, M. & Okba, S. H. Recycled construction and demolition concrete waste as aggregate for structural concrete. HBRC J. 9, 193–200 (2019).

    Article 

    Google Scholar
     

  • Verian, K. P. Using Recycled Concrete as Coarse Aggregate in Pavement Concrete. Master thesis, Purdue Univ. (2012).

  • Elsheikh, A., Al-Zayadi, S. K. & Albo-Hassan, A. S. Experimental investigation of concrete incorporating recycled concrete aggregates. Innovative Infrastruct. Solut. https://doi.org/10.1007/s41062-024-01486-6 (2024).

    Article 

    Google Scholar
     

  • Zarei, A., Sharghi, M., Jeong, H. & Afshin, H. A comparative evaluation of modification methods for improving the mechanical properties of recycled aggregate–recycled steel fiber concrete. KSCE J. Civ. Eng. 28, 3962–3975 (2024).

    Article 

    Google Scholar
     

  • Mahmood, A., Nanos, N. & Begg, D. An evaluation of the strength for recycled fine aggregate replacement in cementitious mortars. Buildings 14, 470 (2024).

    Article 

    Google Scholar
     

  • Faleschini, F. et al. Rheology of fresh concretes with recycled aggregates. Constr. Build. Mater. 73, 407–416 (2014).

    Article 

    Google Scholar
     

  • Guo, H. et al. Durability of recycled aggregate concrete—a review. Cem. Concr. Comp. 89, 251–259 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R., Hu, Z., Li, Y., Wang, K. & Zhang, H. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Constr. Build. Mater. 321, 126371 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J., Jing, X. & Wang, Z. Uni-axial compressive stress-strain relation of recycled coarse aggregate concrete after freezing and thawing cycles. Constr. Build. Mater. 134, 210–219 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sun, J. & Geng, J. Effect of particle size and content of recycled fine aggregate on frost resistance of concrete [Chinese]. J. Build. Mater. 15, 382–385 (2012).

    CAS 

    Google Scholar
     

  • Hong, S., Choi, J., Yuan, T. & Yoon, Y. A review on concrete creep characteristics and its evaluation on high-strength lightweight concrete. J. Mater. Res. Technol. 22, 230–251 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Rossi, P., Tailhan, J. L., Le Maou, F., Gaillet, L. & Martin, E. Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 42, 61–73 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bažant, Z. P., Hauggaard, A. B., Baweja, S. & Ulm, F. J. Microprestress-solidification theory for concrete creep. I: aging and drying effects. J. Eng. Mech. 123, 1181–1194 (1997).


    Google Scholar
     

  • Fathifazl, G. et al. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Comp. 33, 1026–1037 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tam, V. W. Y., Kotrayothar, D. & Xiao, J. Long-term deformation behaviour of recycled aggregate concrete. Constr. Build. Mater. 100, 262–272 (2015).

    Article 

    Google Scholar
     

  • Bravo, M., Brito, J. & Evangelista, L. Thermal performance of concrete with recycled aggregates from CDW plants. Appl. Sci. 7, 740 (2017).

    Article 

    Google Scholar
     

  • Leiva, C., Solís-Guzmán, J., Marrero, M. & García Arenas, C. Recycled blocks with improved sound and fire insulation containing construction and demolition waste. Waste Manage. 33, 663–671 (2013).

    Article 

    Google Scholar
     

  • Zhao, H., Liu, F. & Yang, H. Thermal properties of coarse RCA concrete at elevated temperatures. Appl. Therm. Eng. 140, 180–189 (2018).

    Article 

    Google Scholar
     

  • Chen, Z., Xiao, J. & Ding, T. Behaviours of novel prefabricated RAC–HSC composite beams subjected to fire: an experimental and numerical study. Eng. Struct. 322, 119108 (2025).

    Article 

    Google Scholar
     

  • Xiao, J., Tang, Y., Zhang, K. & Yang, H. Stress–strain relationship of recycled coarse aggregate concrete [Chinese]. Eng. Mech. 41, 43–55 (2024).


    Google Scholar
     

  • Deng, Z., Sheng, J. & Wang, Y. Strength and constitutive model of recycled concrete under biaxial compression. KSCE J. Civ. Eng. 23, 699–710 (2018).

    Article 

    Google Scholar
     

  • Xiao, J., Li, H. & Yang, Z. Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. Constr. Build. Mater. 38, 681–688 (2013).

    Article 

    Google Scholar
     

  • Li, X., Lu, C., Sun, H. & Cui, Y. Evaluation of residual bond behaviour between rebar and recycled aggregate concrete after high-temperature exposure followed by water spray cooling. Eng. Struct. 306, 117837 (2024).

    Article 

    Google Scholar
     

  • Dong, H., Song, Y., Cao, W., Sun, W. & Zhang, J. Flexural bond behavior of reinforced recycled aggregate concrete. Constr. Build. Mater. 213, 514–527 (2019).

    Article 

    Google Scholar
     

  • Xiao, J. & Falkner, H. Bond behaviour between recycled aggregate concrete and steel rebars. Constr. Build. Mater. 21, 395–401 (2007).

    Article 

    Google Scholar
     

  • Kim, S.-W., Yun, H.-D., Park, W.-S. & Jang, Y.-I. Bond strength prediction for deformed steel rebar embedded in recycled coarse aggregate concrete. Mater. Des. 83, 257–269 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Guerra, M., Ceia, F., de Brito, J. & Júlio, E. Anchorage of steel rebars to recycled aggregates concrete. Constr. Build. Mater. 72, 113–123 (2014).

    Article 

    Google Scholar
     

  • Li, Z., Deng, Z., Yang, H. & Wang, H. Bond behavior between recycled aggregate concrete and deformed rebar after freeze–thaw damage. Constr. Build. Mater. 250, 118805 (2020).

    Article 

    Google Scholar
     

  • Jiang, J., Yang, H., Deng, Z. & Li, Z. Bond performance of deformed rebar embedded in recycled aggregate concrete subjected to repeated loading after freeze–thaw cycles. Constr. Build. Mater. 318, 125954 (2022).

    Article 

    Google Scholar
     

  • Li, Z., Deng, Z., Yang, H., Tang, Z. & Wang, W. Bond strength between recycled concrete and rebar under stirrup constraint after freeze–thaw cycles. KSCE J. Civ. Eng. 27, 727–739 (2023).

    Article 

    Google Scholar
     

  • Zhang, J., Tao, X., Li, X., Zhang, Y. & Liu, Y. Analytical and experimental investigation of the bond behavior of confined high-strength recycled aggregate concrete. Constr. Build. Mater. 315, 125636 (2022).

    Article 

    Google Scholar
     

  • Xiao, J., Cheng, Z., Zhou, Z. & Wang, C. Structural engineering applications of recycled aggregate concrete: seismic performance, guidelines, projects and demonstrations. Case Stud. Constr. Mat. 17, e01520 (2022).


    Google Scholar
     

  • Zhang, J., Zhao, Y., Li, X., Li, Y. & Dong, H. Experimental study on seismic performance of recycled aggregate concrete shear wall with high-strength steel bars. Structures 33, 1457–1472 (2021).

    Article 

    Google Scholar
     

  • Xiao, J., Huang, Y., Yang, J. & Zhang, C. Mechanical properties of confined recycled aggregate concrete under axial compression. Constr. Build. Mater. 26, 591–603 (2012).

    Article 

    Google Scholar
     

  • Xiao, J., Tresserras, J. & Tam, V. W. Y. GFRP-tube confined RAC under axial and eccentric loading with and without expansive agent. Constr. Build. Mater. 73, 575–585 (2014).

    Article 

    Google Scholar
     

  • Xiao, J. & Yang, J. On recycled concrete confined by GFRP tube under axial compression [Chinese]. J. Tongji Univ. 37, 1586–1591 (2009).

    CAS 

    Google Scholar
     

  • Chen, Z. & Xiao, J. Fire-insulation properties of recycled aggregate concrete, its application in composite concrete structures, and concrete–concrete interface effects: a review. J. Build. Eng. 107, 112681 (2025).

    Article 

    Google Scholar
     

  • Fang, S., Liu, F., Xiong, Z., Fang, J. & Li, L. Seismic performance of recycled aggregate concrete-filled glass fibre-reinforced polymer-steel composite tube columns. Constr. Build. Mater. 225, 997–1010 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Cao, W., Zhou, Z., Dong, H. & Cheng, J. Experimental study on seismic behavior of mid-rise recycled aggregate concrete shear wall with insulation blocks and single layer reinforcement [Chinese]. J. Build. Struct. 36, 29–36 (2015).


    Google Scholar
     

  • Xiao, J., Zhang, K., Ding, T., Zhang, Q. & Xiao, X. Fundamental issues towards unified design theory of recycled and natural aggregate concrete components. Engineering 29, 188–197 (2023).

    Article 

    Google Scholar
     

  • Seara-Paz, S., González-Fonteboa, B., Martínez-Abella, F. & Eiras-López, J. Deformation recovery of reinforced concrete beams made with recycled coarse aggregates. Eng. Struct. 251, 113482 (2022).

    Article 

    Google Scholar
     

  • Xiao, J. et al. Deformation behavior and low-carbon assessment of large-span beam with fully recycled concrete. Strategic Study CAE 27, 1–14 (2025).


    Google Scholar
     

  • Chen, B., Zhao, Y. & Peng, L. Long-term performance of recycled aggregate concrete beams exposed to 10 years of loading and chloride environments. Eng. Struct. 333, 120140 (2025).

    Article 

    Google Scholar
     

  • Xiao, J., Zhang, K., Cao, W. & Bai, G. Time-dependent reliability-based design of recycled aggregate concrete structures [Chinese]. J. Build. Struct. 41, 17–27 (2020).


    Google Scholar
     

  • Pacheco, J., de Brito, J. & Lamperti Tornaghi, M. Use of Recycled Aggregates in Concrete: Opportunities for Upscaling in Europe 1–79 (Publications Office of the European Union, 2023).

  • Vancura, M., Khazanovich, L. & Tompkins, D. Reappraisal of recycled concrete aggregate as coarse aggregate in concretes for rigid pavements. Transport. Res. Rec. 2113, 149–155 (2009).

    Article 

    Google Scholar
     

  • Nguyen, A. D. & Dosho, Y. Performance evaluation and mix proportion design of concrete using low-quality recycled aggregate. J. Struct. Constr. Eng. 88, 1060–1071 (2023).

    Article 

    Google Scholar
     

  • Koga, H., Katahira, H. & Shimata, A. The introduction of recycled-aggregate concrete specifications in Japan and the research into the freezing–thawing resistance of recycled-aggregate concrete. J. Mater. Cycles Waste Manage. 24, 1207–1215 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kleijer, A. L., Lasvaux, S., Citherlet, S. & Viviani, M. Product-specific life cycle assessment of ready mix concrete: comparison between a recycled and an ordinary concrete. Resour. Conserv. Recyc. 122, 210–218 (2017).

    Article 

    Google Scholar
     

  • Katerusha, D. Barriers to the use of recycled concrete from the perspective of executing companies and possible solution approaches—case study Germany and Switzerland. Resour. Policy 73, 102212 (2021).

    Article 

    Google Scholar
     

  • Bao, Z., Lee, W. M. W. & Lu, W. Implementing on-site construction waste recycling in Hong Kong: barriers and facilitators. Sci. Total. Env. 747, 141091 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, M., Tam, V. W. Y., Le, K. N. & Li, W. Challenges in current construction and demolition waste recycling: a China study. Waste Manag. 118, 610–625 (2020).

    Article 

    Google Scholar
     

  • Shanghai Municipal Development & Reform Commission. Shanghai Municipal Special Support Measures for Circular Economy Development and Comprehensive Resource Utilization [Chinese]. https://fgw.sh.gov.cn/fgw_gfxwj/20211210/56dd45256c1c4e8b96eeb4f0a289f1dc.html (2021).

  • Wang, C., Xiao, J., Zhang, C. & Xiao, X. Structural health monitoring and performance analysis of a 12-story recycled aggregate concrete structure. Eng. Struct. 205, 110102 (2020).

    Article 

    Google Scholar
     

  • Xia, B., Xiao, J. & Li, S. Sustainability-based reliability design for reuse of concrete components. Struct. Saf. 98, 102241 (2022).

    Article 

    Google Scholar
     

  • Ding, T., Xiao, J., Zhang, Q. & Akbarnezhad, A. Experimental and numerical studies on design for deconstruction concrete connections: an overview. Adv. Struct. Eng. 21, 2198–2214 (2018).

    Article 

    Google Scholar
     

  • Xia, B., Xiao, J., Lv, F. & Wang, Y. Mechanical analysis and fundamental philosophy for deconstruction of structures. J. Tongji Univ. 48, 1083–1092 (2020).


    Google Scholar
     

  • Xiao, J. et al. Exploration of low-carbon approximate probability design method for concrete structures [Chinese]. Chin. Sci. Bull. 69, 4137–4150 (2024).

    Article 

    Google Scholar
     

  • Dilbas, H. & Çakır, Ö Physical and mechanical properties of treated recycled aggregate concretes: combination of mechanical treatment and silica fume. J. Mater. Civ. Eng. 33, 04021096 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xia, G. & Zhao, Y. Interface parameters of recycled aggregate concrete considering the distribution of old mortar content. Case Stud. Constr. Mat. 20, e03262 (2024).


    Google Scholar
     

  • Kim, Y., Hanif, A., Usman, M. & Park, W. Influence of bonded mortar of recycled concrete aggregates on interfacial characteristics—porosity assessment based on pore segmentation from backscattered electron image analysis. Constr. Build. Mater. 212, 149–163 (2019).

    Article 

    Google Scholar
     

  • Pepe, M., Toledo Filho, R. D., Koenders, E. A. B. & Martinelli, E. A novel mix design methodology for recycled aggregate concrete. Constr. Build. Mater. 122, 362–372 (2016).

    Article 

    Google Scholar
     

  • Ma, Z., Hu, R., Yao, P. & Wang, C. Utilizing heat-mechanical synergistic treatment for separating concrete waste into high-quality recycled aggregate, active recycled powder and new concrete. J. Build. Eng. 68, 106161 (2023).

    Article 

    Google Scholar
     

  • Akbarnezhad, A., Ong, K. C. G., Tam, C. T. & Zhang, M. H. Effects of the parent concrete properties and crushing procedure on the properties of coarse recycled concrete aggregates. J. Mater. Civ. Eng. 25, 1795–1802 (2013).

    Article 

    Google Scholar
     

  • Gupta, P. K., Rajhans, P., Panda, S. K., Nayak, S. & Das, S. K. Mix design method for self-compacting recycled aggregate concrete and its microstructural investigation by considering adhered mortar in aggregate. J. Mater. Civ. Eng. 32, 0003014 (2020).

    Article 

    Google Scholar
     

  • Zega, C. J., Villagrán-Zaccardi, Y. A. & Di Maio, A. A. Effect of natural coarse aggregate type on the physical and mechanical properties of recycled coarse aggregates. Mater. Struct. 43, 195–202 (2009).

    Article 

    Google Scholar
     

  • Amario, M., Pepe, M., Rangel, C. S. & Toledo Filho, R. D. Autogenous and drying shrinkage of structural concretes incorporating recycled concrete aggregates from different sources. Struct. Concr. 24, 1780–1792 (2022).

    Article 

    Google Scholar
     

  • Prasad, M. L. V. & Rathish Kumar, P. Strength studies on glass fiber reinforced recycled aggregate concrete. Asian J. Civ. Eng. 8, 677–690 (2007).


    Google Scholar
     

  • Abd Elhakam, A., Mohamed, A. E. & Awad, E. Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr. Build. Mater. 35, 421–427 (2012).

    Article 

    Google Scholar
     

  • Allal, M., Zeghichi, L. & Siline, M. Optimization of the recycled aggregate processing using the full factorial design approach, chemical, physical and microstructural characterization of treated aggregates by pre-coated with cementitious paste. J. Build. Eng. 94, 109852 (2024).

    Article 

    Google Scholar
     

  • Al-Waked, Q., Bai, J., Kinuthia, J. & Davies, P. Enhancement of mechanical properties of concrete with treated demolition waste aggregate. J. Build. Eng. 58, 105047 (2022).

    Article 

    Google Scholar
     

  • Wang, Y., Zhang, H., Geng, Y., Wang, Q. & Zhang, S. Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate. Constr. Build. Mater. 215, 332–346 (2019).

    Article 

    Google Scholar
     

  • Chen, G. M., He, Y. H., Jiang, T. & Lin, C. J. Behavior of CFRP-confined recycled aggregate concrete under axial compression. Constr. Build. Mater. 111, 85–97 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Choi, D., Hong, K., Ochirbud, M., Meiramov, D. & Sukontaskuul, P. Mechanical properties of ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC) with recycled sand. Int. J. Concr. Struct. M. https://doi.org/10.1186/s40069-023-00631-2 (2023).

    Article 

    Google Scholar
     

  • Dimitriou, G., Savva, P. & Petrou, M. F. Enhancing mechanical and durability properties of recycled aggregate concrete. Constr. Build. Mater. 158, 228–235 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ferrández, D., Zaragoza-Benzal, A., Pastor Lamberto, R., Santos, P. & Michalak, J. Optimizing masonry mortar: experimental insights into physico-mechanical properties using recycled aggregates and natural fibers. Appl. Sci. 14, 6226 (2024).

    Article 

    Google Scholar
     

  • Fonseca, N., de Brito, J. & Evangelista, L. The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Comp. 33, 637–643 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gesoglu, M., Güneyisi, E., Öz, H. Ö, Taha, I. & Yasemin, M. T. Failure characteristics of self-compacting concretes made with recycled aggregates. Constr. Build. Mater. 98, 334–344 (2015).

    Article 

    Google Scholar
     

  • González-Fonteboa, B. & Martínez-Abella, F. Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Build. Environ. 43, 429–437 (2008).

    Article 

    Google Scholar
     

  • Guo, M. et al. Performance evaluation of recycled aggregate concrete incorporating limestone calcined clay cement (LC3). J. Clean. Prod. 366, 132820 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hawileh, R. A. et al. Residual mechanical properties of recycled aggregate concrete at elevated temperatures. Fire Mater. 48, 138–151 (2023).

    Article 

    Google Scholar
     

  • Huang, D., Liu, Z., Ma, W., Lu, Y. & Li, S. Steel fiber-reinforced recycled aggregate concrete-filled GFRP tube columns: axial compression performance. Constr. Build. Mater. 403, 133143 (2023).

    Article 

    Google Scholar
     

  • Kou, S. C. & Poon, C. S. Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Constr. Build. Mater. 35, 69–76 (2012).

    Article 

    Google Scholar
     

  • Lei, B. et al. Mechanical properties of multi-recycled aggregate concrete under combined compression–shear loading. Eng. Fail. Anal. 143, 106910 (2023).

    Article 

    Google Scholar
     

  • Li, J., Chen, L., Wang, Z. & Wang, Y. Effect of modification and replacement rate of recycled coarse aggregate on properties of recycled aggregate concrete. IJST-T. Civ. Eng. 47, 3321–3332 (2023).


    Google Scholar
     

  • Ma, W., Wang, Y., Huang, L., Yan, L. & Kasal, B. Natural and recycled aggregate concrete containing rice husk ash as replacement of cement: mechanical properties, microstructure, strength model and statistical analysis. J. Build. Eng. 66, 105917 (2023).

    Article 

    Google Scholar
     

  • Mandal, R., Panda, S. K. & Nayak, S. Evaluation of rheological properties of sustainable self-compacting recycled aggregate concrete produced by two-stage mixing approach. J. Build. Eng. 87, 109126 (2024).

    Article 

    Google Scholar
     

  • Marchi, T., Garcia Diaz, E., Salgues, M., Souche, J. C. & Devillers, P. Internal curing capacity of recycled coarse aggregates incorporated in concretes with low water/cement ratios. Constr. Build. Mater. 409, 133893 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nikmehr, B., Kafle, B. & Al-Ameri, R. Developing a sustainable self-compacting geopolymer concrete with 100% geopolymer-coated recycled concrete aggregate replacement. Smart Sustain. Built 13, 395–424 (2023).

    Article 

    Google Scholar
     

  • Ortolan, T. L. P. et al. Durability of concrete incorporating recycled coarse aggregates: carbonation and service life prediction under chloride-induced corrosion. Constr. Build. Mater. 404, 133267 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pedro, D., de Brito, J. & Evangelista, L. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: mechanical, durability and long-term properties. Constr. Build. Mater. 154, 294–309 (2017).

    Article 

    Google Scholar
     

  • Rahal, K. Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 42, 407–415 (2007).

    Article 

    Google Scholar
     

  • Thomas, J., Thaickavil, N. N. & Wilson, P. M. Strength and durability of concrete containing recycled concrete aggregates. J. Build. Eng. 19, 349–365 (2018).

    Article 

    Google Scholar
     

  • Wang, D., Xu, Y., Zheng, Y. & Wu, Y. Effect of freeze–thaw cycles on physical and mechanical properties of concrete with different replacement rates of recycled coarse aggregate. Int. J. Pavement Res. T. https://doi.org/10.1007/s42947-023-00397-6 (2023).

    Article 

    Google Scholar
     

  • Xiao, J., Li, J. & Zhang, C. Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35, 1187–1194 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Yang, G. et al. Study on the mechanical properties and durability of recycled aggregate concrete under the internal curing condition. Materials 15, 5914 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Du, Q. & Bao, Y. Concrete with recycled concrete aggregate and crushed clay bricks. Constr. Build. Mater. 25, 1935–1945 (2011).

    Article 

    Google Scholar
     

  • Zheng, C. et al. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 9, 1317–1322 (2018).

    Article 

    Google Scholar
     

  • Myle, N. J., Wonchang, C. & Taher, A. L. Use of recycled aggregate and fly ash in concrete pavement. Am. J. Eng. Appl. Sci. 4, 201–208 (2011).

    Article 

    Google Scholar
     

  • Dabhade, A. N., Choudhari, S. R. & Gajbhiye, A. R. Performance evaluation of recycled aggregate used in concrete. Int. J. Eng. Res. Appl. 2, 1387–1391 (2012).


    Google Scholar
     

  • Kou, S. C., Poon, C. S. & Chan, D. Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. J. Mater. Civ. Eng. 19, 709–717 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Rao, M. C., Bhattacharyya, S. K. & Barai, S. V. Influence of field recycled coarse aggregate on properties of concrete. Mater. Struct. 44, 205–220 (2010).


    Google Scholar
     

  • Tam, V. W. Y. & Tam, C. M. Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. J. Mater. Sci. 42, 3592–3602 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Domingo-Cabo, A. et al. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 23, 2545–2553 (2009).

    Article 

    Google Scholar
     

  • He, Z., Hu, H., Casanova, I., Liang, C. & Du, S. Effect of shrinkage reducing admixture on creep of recycled aggregate concrete. Constr. Build. Mater. 254, 119312 (2020).

    Article 

    Google Scholar
     

  • Geng, Y., Wang, Y. & Chen, J. Creep behaviour of concrete using recycled coarse aggregates obtained from source concrete with different strengths. Constr. Build. Mater. 128, 199–213 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q., Geng, Y., Wang, Y. & Zhang, H. Drying shrinkage model for recycled aggregate concrete accounting for the influence of parent concrete. Eng. Struct. 202, 109888 (2020).

    Article 

    Google Scholar
     

  • Ozbakkaloglu, T., Gholampour, A. & Xie, T. Mechanical and durability properties of recycled aggregate concrete: effect of recycled aggregate properties and content. J. Mater. Civ. Eng. 30, 04017275 (2017).

    Article 

    Google Scholar
     

  • Zhang, H., Xiao, J., Tang, Y., Duan, Z. & Poon, C. S. Long-term shrinkage and mechanical properties of fully recycled aggregate concrete: testing and modelling. Cem. Concr. Comp. 130, 104527 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Silva, S., Evangelista, L. & de Brito, J. Durability and shrinkage performance of concrete made with coarse multi-recycled concrete aggregates. Constr. Build. Mater. 272, 121645 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J. et al. How to make concrete sustainable. Nature 638, 888–890 (2025).

    Article 
    CAS 

    Google Scholar